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Abstract

The Service Allocation Problem (SAP) is a tactical problem arising in the yard management of a

container transshipment terminal. The objective is the minimization of the container rehandling

operations inside the yard. This study of the SAP was undertaken for the Gioia Tauro port

which is located in Italy and is the main hub terminal for container traffic in the Mediterranean

Sea. The SAP can be formulated as a Generalized Quadratic Assignment Problem (GQAP) with side

constraints. Two mixed integer linear programming formulations are presented. The first one

exploits characteristics of the yard layout at Gioia Tauro where the berth and the corresponding

yard positions extend along a line. The second formulation is an adaptation of a linearization for

the GQAP. In both cases only small instances can be solved optimally. An evolutionary heuristic

was therefore developed. For small size instances the heuristic always yields optimal solutions.

For larger sizes it is always better than a truncated branch-and-bound algorithm applied to the

exact formulations.
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1 Introduction

In maritime transportation the use of containers for general cargo has increased steadily in the last

20 years. Containers are large metal boxes made in standard dimensions and measured in multi-

ples of twenty feet called “twenty foot equivalent units” (TEUs). In 2003 the production of con-

tainers reached two million TEUs, with China being responsible for more than 90 percent of this

output. The world container port throughput for 2002 reached 266.3 million TEUs, an increase of

22.5 million TEUs from the level of 243.8 million TEUs reached in 2001. For statistics on maritime

transport we refer the reader to UNCTAD (2004). In this industry the hub and spoke arrange-

ment is widely adopted. Deep sea vessels, also called mother vessels, operate between a limited

number of transshipment terminals (hubs). Smaller vessels (feeders) link the hubs with the other

ports (spokes). This network topology results in the consolidation of capacity along the routes

linking the hubs and in their growth. In recent years, mother vessels have strongly increased in

size attaining up to 8000 TEUs and larger sizes are planned. Transshipment ports are large inter-

modal platforms, and a limited number of them handle an important share of the world traffic.

Thus, in 2002 the first 20 container ports handled 48% of the total traffic. Ultra-large container

vessels cut down transport cost. However, hub ports are forced to invest heavily to accommodate

these ships by deepening and widening channels and constructing new berthing services of suffi-

cient depth and length. These trends require a continuous improvement in managerial practices at

transshipment terminals which can be viewed as large material handling systems. Advanced com-

munication and information technologies already exist and the next step will be the introduction

of customized optimization techniques. Customization is a key factor since maritime terminals

differ from each other in their layouts and material handling equipments. The need for an optimal

management of logistics activities at modern container terminals is well recognized (Daganzo,

1990; De Castilho and Daganzo, 1993; Taleb-Ibrahimi et al., 1993). For a recent overview and clas-

sification of the various equipments and decision problems in such systems, see Vis and Koster

(2003) and Steenken et al. (2004). A review of operational research issues in maritime logistics,

focused on ship routing and scheduling, is presented in Christiansen et al. (2004).

In a modern container terminal the most important problem is the coordination between the

storage of the containers into the yard, the loading and unloading of the vessels, and the trans-

fer from and to the gates for land transportation (e.g., by rail and truck). Most operations have

their origin or destination in the yard. Yard management is a complex process involving several
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decisional areas like berth allocation for the vessels, operator roster scheduling, and container

transfer. In the latter case the problem is to manage an heterogeneous fleet of vehicles to transfer

containers between the quay, the gates and the yard, and to perform relocations inside the yard.

The yard layout and technology are strategic decisions that affect the nature of the management

problems. Container terminals in the Asia-Pacific region rely on the "Indirect Transfer System"

(ITS) in which the containers are stacked in compact sections and a dedicated gantry crane, called

transtainer, moves them from and to the vehicles which link the yard with the quay and the gates.

The ITS minimizes yard surface requirements. European and North-American container terminals

are based upon the "Direct Transfer System" (DTS) in which the vehicles that transfer the contain-

ers between the yard, the quay and the gates are also able to move the containers from and to the

slots assigned into the yard. The DTS requires a larger surface because dedicated lanes in the yard

are necessary for the vehicles in order to have access to the slot positions. In our study we consider

the DTS in use at the port of Gioia Tauro, located in southern Italy.

1.1 The Gioia Tauro Maritime Terminal

This study was initiated at the request of the Gioia Tauro Maritime Terminal, a port mainly de-

voted to transshipment activities involving mother vessels and feeders operating in a hub and

spoke manner. Nearly fifty spoke ports are linked to Gioia Tauro. In just a few years, Gioia Tauro

has become the largest transshipment port on the Mediterranean Sea. This achievement is impres-

sive since the port only opened in 1995, and no infrastructures existed in 1993. The traffic handled

in 2004 consists of 3.26 million TEUs. The harbor entrance is 250 meters wide and the water depth

is 18 meters. The quay length is 3100 meters. The channel along the quay presents a multi-water

depth configuration, ranging from 13.5 to 15.5 meters. There are 23 available quay cranes, 18 of

which are mounted on rail, while the others roll on tires. A fleet of 75 vehicles, called straddle

carriers, transfer the containers between the quay cranes and the yard. These vehicles are capable

of transporting up to two containers at a time and can insert containers directly into the right yard

slot. Straddle carriers are usually assigned to the transport of full containers over relatively short

distances (less than 500 meters), while different vehicles are used for longer transfers.

The yard surface occupies 1.1 million square meters and can store nearly 59,000 TEUs (1,100 of

which can be refrigerated). The yard contains four main areas. Three of these, called A, B and C,

are parallel to the quay, with area A being the closest to the sea and area C being the most distant.
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Figure 1: Terminal layout at Gioia Tauro

Areas A and B are divided into 16 bays each. Thus a bay is identified by a level index from one

to 16 and by an area code. The distance between adjacent bay centers is 150 meters. The layout of

the Gioia Tauro yard is represented in Figure 1 which illustrates only a subset of the bays to keep

the figure dimensions reasonable, and also because the central part of the yard presents additional

details which will be explained later. An average bay consists of 32 lines, each containing 16 slots.

A slot can host up to three one-TEU containers stacked one on top of the other, but it is preferable
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to stack only two containers. Accordingly, the yard capacity is computed assuming two TEUs per

slot, and thus the average bay has a capacity of 1024 TEUs. There is a significant variation in the

capacity of the bays of area B, which range from 749 to 890 TEUs, and in the bays of area A, which

range from 1002 to 1240 TEUs. When we consider the total capacity of the bays of areas A and B

having the same level index, this quantity ranges from 1882 to 2106 TEUs. Area C is dedicated to

the empty containers which have an eight to ten day average dwell time, much more than for a full

container. This is the reason why these are located in the most remote positions of the yard. Empty

containers can be stacked up to five high. Area D is a dynamic area used for empty containers or

full containers, depending on the situation.

1.2 Overview of the service allocation problem

The objective of this study is to solve a tactical yard management problem called the Service Allo-

cation Problem (SAP). A service, also called port route, is the sequence of ports visited by a vessel.

Shipping companies plan their port routes in order to match the demand for freight transporta-

tion. Scheduling and assigning vessels to port routes are decisional problems solved by shipping

companies. A shipping company will usually ask the terminal management to dedicate specific

areas of the yard and the quay to their services. This problem, solved by the yard management,

is known as the SAP. The allocated area of a service is called the favorite area of that service. A

service is defined as incoming or outgoing depending on the container flow: when a container

arrives in the terminal with a given service, this service is incoming; when a container leaves the

terminal, the corresponding service is outgoing. Therefore, the same service can be incoming,

outgoing, or both. In a hub terminal the number of outgoing services is usually larger than the

number of incoming services (1.5 times as many in our case study). The service allocation has an

impact on the number of handling operations inside the yard. In fact, a container arriving with

a service is stored in the favorite area of this service, and is transferred to the favorite area of

the outgoing service one day before departure in order to speed up loading operations. Terminal

managers want to minimize handling operations resulting from yard to yard container transfer,

also called housekeeping, occurring when the area of the incoming and outgoing services differ.

It is important to observe that the SAP is a tactical problem because service allocation decisions

are made over a three-month horizon. Decisions made at the tactical level may later be modified

when ships actually arrive in the port. An operational problem must then be solved: in order to
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avoid traffic congestion and reduce service time, a ship may be assigned to a quay area different

from its favorite area. This operational problem is known as the Berth Allocation Problem (Cordeau

et al., 2005b). The same principle applies to the allocation of storage areas to services in the yard.

However, the SAP solution serves as a reference for the operational space allocation problem.

Only areas A and B are relevant to the SAP at Gioia Tauro. The combined capacity of these

two areas is 30,000 TEUs. When deciding where a service should be allocated in the yard, only

the position of the bay along the quay (indicated in Figure 1 by the numbers 1 to 16) is relevant.

The allocation of a container to either area A or area B is determined at the operational level

according to the container dwelling time (the dwelling time is the time spent in the yard by a

container). Therefore two bays with the same position with respect to the quay are considered for

the SAP as a single one. In the following we consider a bay as the union of a bay of area A and the

corresponding bay of area B.

Some services require that two adjacent bays be assigned to them. These services correspond

to vessels with a length exceeding 250 meters. In fact, since the distance between adjacent bays

is 150 meters, the berthing of one of these vessels prevents the use of at least two bays by other

vessels. Furthermore, these long vessels generate substantial loading and unloading operations

and require an average of three quay cranes. Using two bays facilitates the vehicle flow from the

quay cranes to the container slots in the yard. A service with this double requirement is treated by

the SAP as a pair of split services.

The Gioia Tauro quay can be approximated with a line showing a discontinuity in the middle,

between bays 8 and 9 (Figure 2), which creates an additional constraint for the SAP relative to split

services: a pair of split services requiring two bays cannot be allocated to bays 8 and 9.

Assigning a set of services to a bay generates loading and unloading operations (called moves)

for the quay cranes operating in front of this bay. The yard space requirement and the quay

crane moves associated with a given service are not correlated because of the differences in the

container dwelling times between services. For example, assume two services i and j have the

same amount of container traffic expressed in number of moves, and service i presents a lower

dwelling time than service j. Thus service i will require a lower space requirement than service

j in the yard, while the requirements of these two services in terms of moves are equal. It is

therefore necessary to impose capacity constraints both on the number of crane moves and on

space requirements. The desired operational crane load is set to less than the largest possible

6



Bay 9Bay 8Bay 6 Bay 7

Berth discontinuity

Split vessel

Bay 10

Figure 2: Central part of the Gioia Tauro layout illustrating the berthing constraint for split services
at bays 8 and 9

feasible value in the hope of uniformly spreading the expected crane load operations along the

quay, thus increasing berth availability and therefore reducing expected vessel waiting time. In

fact, reducing housekeeping and vessel waiting times are two conflicting objectives. Reducing

housekeeping time usually translates in a higher concentration of vessels in some parts of the quay,

which leads to queueing and to longer average service times. Conversely, reducing waiting time

often leads to assigning vessels to the first available area along the quay without consideration of

handling operations in the yard.

Another SAP constraint derives from the multi-draft channel configuration, i.e. the available

draft (water depth) varies along the quay. Before entering the port, each vessel declares the draft it

requires. This value depends on the characteristics of the vessel and on its load. Vessels assigned

to the same service have similar characteristics and average load, and therefore their draft requests

have a small variance. Thus, the draft value for a service can be estimated accurately for the time

horizon of the problem. Exceptions are handled at the operational level.

An assignment of services to bays generates housekeeping traffic that can be estimated by

multiplying the traffic intensity between services with the distance between the corresponding

bays. Given the linear layout and the grid structure of the road network, these distances are

computed with the L1 norm between the centers of the bays. Using the L1 norm, the distance

between two points a = (a1, ..., an) and b = (b1, ..., bn) is computed as
∑n

i=1 |ai − bi|.
The number of services operating at Gioia Tauro is 62. Currently the SAP is solved by ex-

perienced planners without optimization tools. The 62 services are aggregated into 18 families

of services and one of the 16 positions is assigned to each family, after which the assignment is
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reevaluated to consider splits.

The SAP can be regarded as a constrained version of the Generalized Quadratic Assignment Prob-

lem (GQAP). In the GQAP we are given n weighted facilities, m capacitated sites, a traffic intensity

matrix between facilities, a distance matrix between sites, unit traffic costs, and assignment costs

of facilities to sites. The aim is to determine an assignment of facilities to sites in such a way that

the sum of assignment and traffic costs is minimized and the total weight of all facilities assigned

to the same site does not exceed the capacity of the site. The GQAP was introduced by Lee and

Ma (2003). It generalizes the Quadratic Assignment Problem (QAP) in which n = m and exactly one

facility must be assigned to each site. It is therefore NP-hard (Garey and Johnson, 1979) and the

same holds for the SAP.

1.3 Outline of the remainder of this article

In the following we first model the SAP with a quadratic programming formulation and we then

present two linearization approaches (Section 2). Since only small size instances can be solved

optimally within a reasonable time, an evolutionary heuristic is introduced in Section 3, followed

by computational results in Section 4, and by the conclusions in Section 5.

2 Mathematical model

We present in Section 2.1 an integer quadratic programming formulation for the SAP and we then

introduce in Section 2.2 a linearization that exploits the linear layout of the Gioia Tauro yard. A

more general case with a two-dimensional grid yard is considered in Section 2.3. For comparison

purposes a second formulation for our problem is introduced in Section 2.4. It is an adaptation

of the linearization for the GQAP introduced by Lee and Ma (2003) and is based on the Quadratic

Assignment Problem (QAP) linearizations proposed by Frieze and Yadegar (1983) and by Padberg

and Rijal (1996).

2.1 Quadratic SAP formulation

To model the SAP we denote by Ñ = {1, ..., ñ} the set of services, and by D = {1, ..., nd} ⊂ Ñ

the subset of services requiring a double assignment. A set D
′
= {ñ + 1, ..., ñ + nd} is introduced

to represent the split services associated with D, where ñ + i is the split service associated with
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i ∈ D. The SAP is therefore defined on a set N = Ñ ∪D
′
, where |N | = n = ñ + nd. For notational

convenience define N+(i) = {j ∈ N : j > i}. The set of bays is defined by M , with |M | = m.

Binary decision variables xik are equal to 1 if and only if service i ∈ N is assigned to bay k ∈ M .

The other input data for the SAP are:

• tij , the traffic intensity between services i ∈ N and j ∈ N+(i), expressed in average number

of containers per day; the value of tij is in fact the sum of the outgoing containers from i to

j and from j to i;

• qi, the space requirement of service i ∈ N , expressed in average number of TEUs per day;

• Qk, the space available at bay k ∈ M , expressed in average number of TEUs per day;

• ci, the average number of crane moves required for service i ∈ N per day;

• Ck, the average number of crane moves allowed at bay k ∈ M per day;

• M(i), a subset of M representing the feasible bay assignments for service i resulting from

the draft constraint.

Service allocation decisions are made over a three-month horizon. The input data are thus the

expected values over this period. In practice, the average daily values (i.e., the estimate divided

by the number of days in the period) are preferred since they relate to common performance

measures (vessels per day, moves per day, etc.).

Given the linear layout of the Gioia Tauro yard, each bay can be identified by one position co-

ordinate and the distances between bays is calculated as the difference between these coordinates.

Thus define:

• ak, the position coordinate of bay k ∈ M ,

• dhk = |ah − ak| , the distance between bays h ∈ M and k ∈ M .

A straightforward integer quadratic programming formulation of the SAP is given by:

minimize
∑

i∈N\{n}

∑

j∈N+(i)

∑

h∈M

∑

k∈M

tijdhkxihxjk (1)

subject to
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∑

k∈M(i)

xik = 1 ∀i ∈ N, (2)

∑

i∈N

qixik ≤ Qk ∀k ∈ M, (3)

∑

i∈N

cixik ≤ Ck ∀k ∈ M, (4)

xik = xñ+i,k−1 ∀i ∈ D, ∀k ∈ M(i) \ {1}, (5)

xi9 = 0 ∀i ∈ D, (6)

xik ∈ {0, 1} ∀i ∈ N, ∀k ∈ M. (7)

The objective function to minimize is the sum of traffic intensities between services weighted

by the distances resulting from the assignment decisions. We therefore minimize the housekeep-

ing, i.e. the handling operations resulting from yard to yard container transfers occurring when

the area of the incoming and outgoing services differ. Constraints (2) state that each service must

be assigned to one and only one bay and this bay must belong to the feasible set of the service.

Constraints (3) and (4) ensure that the total space and the total crane moves required by the ser-

vices assigned to a bay do not exceed its availability. Constraints (5) force the split pair (i, ñ + i) to

be assigned to positions k and k−1, with k ∈ M(i)\{1}, and constraints (6) forbid the assignment

of a split pair to bays 8 and 9 which present a discontinuity.

2.2 Linearization of the SAP formulation

To take advantage of the linear layout of the Gioia Tauro yard (see Figure 3) we introduce a position

variable, yi, i ∈ N, equal to ak whenever xik = 1. A formulation of the SAP using yi variables but

still with a non-linear objective function follows:

minimize
∑

i∈N\{n}

∑

j∈N+(i)

tij |yi − yj | (8)

subject to (2) - (7) and

yi =
∑

k∈M(i)

akxik ∀i ∈ N. (9)
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Figure 3: Linear disposition of the bays modelled by the SAP

Position variables yi are consistent with the assignment variables xik because of constraints

(9). This formulation can easily be linearized through the introduction of continuous non-negative

variables φij and ψij and additional constraints, yielding the L1SAP formulation:

minimize
∑

i∈N\{n}

∑

j∈N+(i)

tij(φij + ψij) (10)

subject to (2) - (7), (9) and

yi − yj ≤ φij ∀i ∈ N \ {n}, ∀j ∈ N+(i), (11)

yj − yi ≤ ψij ∀i ∈ N \ {n}, ∀j ∈ N+(i), (12)

φij ≥ 0 ∀i ∈ N \ {n}, ∀j ∈ N+(i), (13)

ψij ≥ 0 ∀i ∈ N \ {n}, ∀j ∈ N+(i). (14)

Because the objective function is minimized, it follows by constraints (11) and (13) that φij =

yi − yj whenever yi − yj ≥ 0. Similarly, by constraints (12) and (14), ψij = yj − yi whenever

yi − yj ≤ 0. If the inter-bay distance is a constant, as it is in our case, we can, through the yi

variables, formulate the adjacency of the split services with only nd constraints instead of nd(m−1)

as in (5):
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yi − yñ+i = 1 ∀i ∈ D. (15)

In Section 4 we will discuss the opportunity of integrating constraints (15) in the L1SAP for-

mulation, along with constraint (16) which, while redundant, strengthens the relaxation:

∑

i∈N

yi =
∑

i∈N

∑

k∈M

akxik. (16)

2.3 Extension of the linearized model to a two dimensional grid

The L1SAP formulation, which exploits the L1 norm used to compute distances between the

bays, can be extended to handle the case of a two-dimensional grid. Let a generic bay k ∈ M be

identified by a pair (ak, bk), and let wi, i ∈ N, be a position variable equal to bk whenever xik = 1

(see Figure 4). The model of Section 2.2 then becomes:

y axis

w axis

yj = ah

h

k

yi = ak

service j

service i

wj = bh

wi = bk

Figure 4: Two-dimensional case with L1 norm

minimize
∑

i∈N\{n}

∑

j∈N+(i)

tij(φij + ψij + βij + γij) (17)
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subject to (2) - (7), (9), (11) - (14) and

wi =
∑

k∈M

bkxik ∀i ∈ N, (18)

wi − wj ≤ βij ∀i ∈ N \ {n}, ∀j ∈ N+(i), (19)

wj − wi ≤ γij ∀i ∈ N \ {n}, ∀j ∈ N+(i), (20)

βij ≥ 0 ∀i ∈ N \ {n}, ∀j ∈ N+(i), (21)

γij ≥ 0 ∀i ∈ N \ {n}, ∀j ∈ N+(i). (22)

A similar approach can be used for a problem with the L∞ norm, but since it is straightforward

and not relevant for our problem we omit it.

2.4 Linearization of the GQAP

Lee and Ma (2003) have introduced a linearization for the GQAP, based on QAP linearizations pro-

posed by Frieze and Yadegar (1983) and by Padberg and Rijal (1996). Adapting this formulation

to the our problem is simple. The formulation, called LGQAP, is as follows:

minimize
∑

i∈N\{n}

∑

j∈N+(i)

∑

k∈M

∑

h∈M

tijdhkzikjh (23)

subject to (2) - (7) and

∑

h∈M

zikjh = xik ∀i ∈ N \ {n}, ∀k ∈ M, ∀j ∈ N+(i), (24)

∑

k∈M

zikjh = xjh ∀i ∈ N \ {n}, ∀j ∈ N+(i), ∀h ∈ M, (25)

0 ≤ zikjh ≤ 1 ∀i ∈ N \ {n}, ∀k ∈ M, ∀j ∈ N+(i), ∀h ∈ M. (26)

LGQAP uses additional variables zikjh equal to 1 if and only if service i is assigned to bay k

and service j is assigned to bay h. In Section 4 we will present comparative computational results

obtained with the L1SAP and LGQAP formulations.
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3 M-SAP, a Memetic Heuristic for the SAP

We now present a memetic heuristic called M-SAP, based on a previously developed heuristic for

the GQAP (Cordeau et al., 2005a) refereed to as M-GQAP. While M-GQAP considers only one set

of capacity constraints, M-SAP must be capable of handling two sets of capacity constraints, as

well as dedicated constraints for split pairs of services, specific berth characteristics like the berth

discontinuity, and infeasible assignments resulting from the draft constraint. We will describe the

components of M-SAP and highlight its differences with respect to M-GQAP.

A memetic heuristic (Moscato and Cotta, 2003) combines genetic search (Holland, 1992) and

tabu search (Glover, 1986). The algorithm randomly generates an initial population P of feasible

solutions, and a cycle of genetic iterations is then applied to P . At each iteration a merging pro-

cedure creates an offspring which is then improved trough at most η iterations of tabu search. If

the resulting improved offspring is better than the worst member of the population and does not

already belong to P , it then replaces the worst solution; otherwise the offspring is discarded. To

enhance the exploration of different areas of the solution space, a multi-start approach is also used,

meaning that the algorithm is started ξ times and the best solution is retained. We now present

the components of the heuristic in more detail.

3.1 Initial population

Denote by S the set of solutions satisfying constraints (2) - (7) and by S̃ the set of solutions sat-

isfying (2) - (4) and (7). A first solution s ∈ S̃ is randomly generated by assigning services to

bays while attempting to respect the capacity constraints (3) and (4). Reaching feasibility with

respect to these constraints is not always possible, particularly in the case of tightly constrained

instances. Furthermore, because constraints (5) and (6) are not explicitly considered during the

random assignment, these are seldom satisfied in the initial solution. Therefore, an attempt to

reach feasibility is made through the application of the TABUFIX search procedure described in

Section 3.4. If TABUFIX fails, or if the solution thus produced is already in P , a new solution is

generated until a desired population size |P | or a time limit is reached. If the time limit is reached

the algorithm stops with an error message, since it failed in generating the desired population size.
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3.2 Genetic procedure

The genetic procedure attempts to improve the population P by merging, at each iteration ω, two

solutions to create an offspring. The basic merging rule used is inspired by the work of Drezner

(2003) for the QAP. A modified merging procedure that considers capacity constraints was de-

veloped for the GQAP (Cordeau et al., 2005a). Because the SAP contains additional constraints

with respect to the GQAP, the merging procedure we have developed for the SAP is new. The

additional constraints relate to crane moves (4), the split pair continuity requirements (5), and the

berth discontinuity (6). Constraints (2) are also different form those of the GQAP because the draft

requirement forbids some assignments.

For each bay k ∈ M the median value of the distances between bay k and the other m− 1 bays

is first computed. Bays whose distance from k is less than the median value are called cohesive

with respect to k. All bays that are at the same distance as the median value are called neutral,

and the remaining bays are called non-cohesive. For each bay k it is then possible to partition M

into a subset Mk
1 of cohesive bays, a subset Mk

2 of neutral bays, and a subset Mk
3 of non-cohesive

bays. Bay k is considered as belonging to Mk
1 . A bay k selected to partition M into subsets is

called a pivot. The construction of the partitions of M for each pivot is performed only once at the

beginning of the algorithm.

The merging procedure randomly selects two solutions of the population pool called parents.

The parent A1 having the smaller solution value is called first parent and the other parent A2

is called second parent. Ties are broken arbitrarily. Like all elements of P , these two solutions

satisfy constraints (2) - (7). The merging procedure operates as a cycle of iterations applied to

all bays k ∈ M . Each iteration attempts to generate a new solution sk ∈ S̃ which, as we have

mentioned, is feasible with respect to constraints (2) - (4) and (7). Therefore the merging procedure

relaxes constraints (5) - (6) related to the adjacency requirement for split pairs and to the berth

discontinuity. We denote by p1(sk) the amount of violation of constraints (5) - (6) in solution sk

and we compute it as follows: p1(sk) =
∑

i∈D{||ν(i)−ν(ñ+i)|−1|+xi9}, where ν(i) is the assigned

bay for services i ∈ N , and p1(sk) = 0 if sk ∈ S. In the merging cycle the solutions generated are

compared by means of a penalized cost function f(sk) = c(sk)(1 + p1(sk)×m× ζ), where c(sk) is

the cost function as stated in (1). In this expression the factor m is used to penalize more heavily

the violation p1(sk) when the instance becomes larger and hence more difficult. The factor ζ was

set equal to 0.1 to reduce the impact of m.
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In sk a bay h belonging to the cohesive subset Mk
1 is assigned all services previously assigned

to that bay h in the first parent A1. Similarly a bay in the non-cohesive subset Mk
3 is assigned all

services from the second parent A2, if these services are not already assigned to the cohesive sub-

set. After this phase some services may still be unassigned. An attempt is then made to randomly

assign these to bays while preserving feasibility on capacity constraints (4) - (5), but if no feasible

assignment can be reached the solution is then discarded. If a solution sk ∈ S̃ is obtained, it is then

compared, using f(), to the best known solution s∗ω found at iteration ω among those correspond-

ing to all pivot bays; if sk improves upon s∗ω , it then replaces it. As a result of this merging cycle

we can obtain a solution s∗ω ∈ S̃ that will not necessarily satisfy constraints (5) and (6). In this case

the TABUFIX search procedure is called to reach feasibility. Merging two parents can be unsuc-

cessful if no solution s∗ω ∈ S̃ is encountered during the m iterations or if TABUFIX fails to restore

feasibility. In this case another set of parents is randomly selected and the process is repeated until

a feasible offspring is generated. After every successful or unsuccessful merging, the two parents

are labelled as forbidden, and no other merging is attempted with them. The number of forbidden

couples is updated during the search. When this number reaches its maximum possible value of

|P | × (|P | − 1)/2, the genetic cycle is stopped. We refer to Cordeau et al. (2005a) for an example

illustrating the merging process with capacity constraints.

After the merging procedure a post-optimization tabu search heuristic (POTS) is called to im-

prove the best offspring s∗ω ∈ S. The resulting solution is compared with the worst solution in P

and is discarded if it does not improve upon it. Otherwise the improved offspring is compared

with the other solutions in P . If the offspring is not original, meaning that the same solution al-

ready exists in P , it is discarded; otherwise, it is inserted in the population P to replace the worst

solution. The information about the forbidden coupling are therefore updated.

At the end of an iteration the genetic iteration counter ω is incremented and another iteration is

performed until a limit $ is reached. The genetic cycle may terminate prematurely if the number

of forbidden couples reaches the maximum value of |P | × (|P | − 1)/2. When this event occurs

the population P becomes exhausted, no coupling is possible, and a new random population is

required. Whenever ω > $ or premature termination occurs, the genetic procedure gives the

control to the multi-start cycle which compares the best solution found during the current genetic

cycle with the preceding ones, if any. The genetic procedure can be summarized as follows:

• for ω = 1, ..., $ { /* genetic cycle */
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– Do {

∗ randomly select a non-forbidden couple (A1, A2) in P

∗ for k = 1, ..., m { /* merging cycle */

· merge (A1, A2) using k as pivot and obtain sk ∈ S̃, if any

· using the penalized cost function f(), compare sk to the best known offspring

s∗ω , if any}

∗ if s∗ω /∈ S call TABUFIX

– } until an offspring is generated

– Apply POTS to the offspring s∗ωwhich eventually is improved

– Compare s∗ω with the worst and the best solutions in P

– If s∗ω is better than the worst and not better than the best solution, check whether it is

original

– Replace the worst solution with s∗ω if it is original and better than the worst solution

– Update the information about forbidden couples and eventually decide to terminate

the genetic cycle}

3.3 Post-optimization tabu search

The POTS procedure allows temporary violations of the capacity constraints (3) - (4) and of the

adjacency and berth discontinuity constraints (5) - (6). Denote by SA the set of solutions satisfying

the assignment constraints (2) and (7). As before, let c(s) denote the cost of a solution s ∈ SA.

Let also p2(s) be the violation of the yard capacity constraints (3) and p3(s) be the violation of the

crane moves capacity constraints (4):

p2 =
∑

k∈M

max{0,
∑

i∈N

qixik −Qk},

p3 =
∑

k∈M

max{0,
∑

i∈N

cixik − Ck}.

Solutions are then evaluated by means of a penalized cost function g(s) = c(s) + [1 + (p2(s) +

p3(s))/m]α1p1(s)+α2p2(s)+α3p3(s), where αl, l ∈ {1, 2, 3} are positive parameters. Since usually
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p1(s) << p2(s) + p3(s), the term [1 + (p2(s) + p3(s))/m] acts as a scaling factor. By dynamically

adjusting the value of the αl parameters the relaxation mechanism facilitates the exploration of

the search space and is particularly useful to escape local minima. Parameter αl is updated at each

iteration as follows: if the new current solution s satisfies pl(s) = 0, then αl is divided by a factor

1 + δ, where δ is a positive parameter; otherwise αl is multiplied by 1 + δ.

The heuristic explores the solution space by moving at each iteration from the current solution

s ∈ SA to the best solution in its neighborhood H(s). The tabu search method is based on the

definition of attributes used to characterize the solutions of SA. These attributes also control tabu

tenures. With each solution s ∈ SA is associated an attribute set B(s) = {(i, k): facility i is assigned

to bay k}. The neighborhood H(s) of a solution s is defined by applying a simple operator that

removes an attribute (i, k) from B(s) and replaces it with another attribute (i, k′), where k 6= k′.

We note that k′ ∈ M(i), since constraints (2) and (7) are satisfied for s ∈ SA. When facility i

is removed from bay k, its reassignment to k is declared forbidden for the next θ iterations by

assigning a tabu status to attribute (i, k). An aspiration criterion allows the revocation of the tabu

status of an attribute if that would allow the search process to reach a solution of smaller cost than

that of the best solution identified possessing that attribute.

Every time an improved feasible solution is reached a counter ζ∗ is set to ζ, the number of the

current iteration. When the difference ζ−ζ∗ becomes larger than a preset value µ, POTS terminates

and the current best solution is returned to the genetic cycle. However, the maximum number of

iterations allowed is set equal to η.

3.4 Recovering feasibility: procedure TABUFIX

TABUFIX is an auxiliary procedure called by two of the procedures just described (initial popu-

lation and genetic) when a feasible solution cannot be reached. TABUFIX is a variant of POTS. It

starts from an infeasible solution s with some violation pl(s) > 0, l ∈ {1, 2, 3}. The cost function

g(s) is replaced with g(s) = [1 + (p2(s) + p3(s))/m]p1(s) + p2(s) + p3(s) and thus the penalization

mechanism driven by the parameters αl is no longer necessary. The value of the tabu tenure pa-

rameter, θf , can be different from that of θ used by POTS. The neighborhood structure and all the

other tabu search mechanisms are the same as those of POTS, but TABUFIX employs also a diver-

sification scheme. A solution s ∈ N(s) such that f(s) ≥ f(s) is penalized by a factor proportional

to the addition frequency of its distinguishing attribute, and by a scaling factor. More precisely, let
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ρik be the number of times attribute (i, k) has been added to the solution during the process and

let ζ be the number of the current iteration. If attribute (i, k) is added to s to obtain s, a penalty

p(s) = λ
√

nmc(s)ρik/ζ is added to f(s), where p(s) = 0 if f(s) < f(s). The scaling factor c(s)

introduces a correction to adjust the penalties with respect to the total solution cost. The use of
√

nm as a scaling factor was first suggested in the context of the VRP by Taillard (1993) after ex-

tensive computational experiments. It can be explained as follows: since there are O(nm) possible

attributes, the frequency of addition of a given attribute into the solution is inversely related to

problem size. Using the factor
√

nm seems to adequately compensate for problem size. Finally, a

parameter λ is used to control the intensity of the diversification. These penalties have the effect

of driving the search process toward less explored regions of the search space. TABUFIX ends as

soon as a feasible solution is reached, meaning that
∑3

l=1 pl(s) = 0. The maximum number of

iterations allowed is set equal to ηf .

3.5 Differences between M-SAP and M-GQAP

With respect to what is done in M-GQAP, the penalized cost function used in POTS was modified

to accommodate violations of new constraints present in SAP, namely: the adjacency requirement

for split pairs, the berth discontinuity, and capacity constraints relative to quay crane moves. The

neighborhood structure H(s) must also consider feasibility for the draft requirement. The major

impact of the SAP structure is on the genetic procedure, where the merging cycle alone infre-

quently generates a feasible offspring. Therefore an appropriate relaxation was developed for the

merging phase and the procedure TABUFIX was also used in this context. Other differences be-

tween the SAP and the GQAP, like the absence of installation costs in the objective function and

use of an L1 norm, have led to other smaller variations between the two heuristics.

4 Computational results

We first describe how test instances were generated, and then provide results obtained with our

heuristic compared with those obtained with the two exact formulations of Sections 2.2 and 2.4.

19



4.1 Test instances

Sixty-two services are listed in the Gioia Tauro port operation database. Ordering the services

according to their expected yard space requirement qi shows that the first 33 contribute to 95% of

the total space requirement. This situation is illustrated in Figure 5.
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Figure 5: Relative importance of the Gioia Tauro’s services

A similar observation can be made by ordering the services according to the ci values. Among

these 33 services, six require a double assignment, i.e., nd = 6 and n = 39. Therefore the full SAP

problem contains 39 services to be assigned to 16 bays, if the less important services are neglected.

The yard space and crane moves required by each service and the interactions between services

are derived by a statistical assessment of the terminal database. The instance thus defined is called

"39-16". As we will show, this instance is too large to be solved by applying CPLEX to an exact

formulation. To test the heuristic versus an exact formulation we have therefore created some

easier instances. An instance called "20-8" is obtained from the original "39-16" data, by selecting

a subset of services which are assigned, under the current SAP decisions at Gioia Tauro, to the

bay set {9, ..., 16}. These services are representative because they all belong to the same and most

important shipping company operating at Gioia Tauro. Furthermore, we have designed a new set

R of ten randomly generated instances. These are labelled with three letters: n, m, and a parameter

f ∈ {1, ..., 100} which controls the tightness of the capacity constraints. For given n, m and f , the
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input data were generated as follows:

• tij was generated according to a discrete uniform distribution in [1, ..., 100],

• qi and ci were generated according to a discrete uniform distribution in [1, ..., 100],

• Ck was generated according to a discrete uniform distribution in [1, ..., 100×∑
i∈N ci/(fm)],

• Qk was generated according to a discrete uniform distribution in [1, ..., 100×∑
i∈N qi/(fm)].

Given a service i ∈ N , each k ∈ M belongs to M(i) with probability 90%. The number of split

pairs nd was taken equal to b0.2nc and, after randomly selecting nd pairs in N , their data were

adjusted according to the description given for this set of services (a split pair (i, ñ + i) must have

the same draft requirement, and tij = tñ+i,j ∀i ∈ D and ∀j ∈ N ).

4.2 Implementation details and results

The M-SAP procedures were coded in ANSI C and the two exact formulations were implemented

in CPLEX 8.1. Computational experiments were performed on a SUN workstation (1.2 GHz).

For the L1SAP formulation, let LB1 be the linear relaxation value with constraints (15) and (16),

and let LB2 be the linear relaxation value without these. Figure 6 plots the lower bounds LB1 and

LB2 at various levels of the branch-and-bound enumeration tree for the "20-08" instance. Similar

patterns can be observed on other instances. Constraints (15) and (16) are therefore effective in

improving the linear relaxation. In the following the CPLEX implementation of L1SAP refers to

the one with constraints (15) and (16).

The parameters used in the various M-SAP procedures are as follows:

• Initial Population:

– |P |: population size, equal to 150.

• Genetic Procedure:

– $: maximum number of genetic iterations, equal to 8000.

• Post-Optimization Tabu Search:

– θ: tabu duration, equal to 64;

– µ: limit when POTS is terminated prematurely, equal to 20;
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Figure 6: Lower Bounds of two implementations of L1SAP .

– δ : penalty adjustment parameter, equal to 1;

– η: maximum number of POTS iterations, equal to 1000.

• TABUFIX:

– θf : tabu duration, equal to 128;

– λ : diversification intensity parameter, equal to 1;

– ηf : maximum number of iterations, equal to 3200.

These parameter values are the same as those used for the M-GQAP heuristic, i.e. we did not

attempt specific parameter settings for the instances of this study. The computation time of the

heuristic is influenced by the parameter ξ (the number of times the algorithm is started) and this is

the only parameter that we will allow to vary during our computational experiments for the SAP.

Table 1 reports the results of the heuristic and the two exact formulations implemented in

CPLEX on the real data instances. Here the multi-start mechanism was disabled, i.e. ξ = 1. The

small instance "20-08" is easily solved to optimality by all three algorithms, but LGQAP is the
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slowest one. On the large instance "39-16" we set a 60 hour time limit on the two CPLEX imple-

mentations. M-SAP obtains a better solution in far less computational time than these truncated

branch-and-bound algorithms.

M-SAP - ξ = 1 L1SAP -CPLEX LGQAP-CPLEX
Instance Solution Time Solution Gapa Time Solution Gapa Time
code (min.) (%) (min.) (%) (min.)
20-08 159994 0.2 159994 0.0 4.6 159994 0.0 129.1
39-16 377606 5.2 379846 74.7% 3600.0 559858 83.7% 3600.1

Table 1: Real data instances, best values in bold
a - The gap is computed with respect to the value of the linear relaxation as (upper bound - lower bound)/upper bound.

Table 2 illustrates how solution quality improves with the number of M-SAP iterations for

instance "39-16". However, from ξ = 80 upwards there are no additional improvements. The

corresponding CPU time of 463 minutes is still far less than the time limit allowed to CPLEX in

the tests reported above.

ξ

1 10 20 40 80 160
Solution value 377606 372346 365110 359232 357018 357018
100 × solution value / best solution 105.8 104.3 102.3 100.6 100.0 100.0
CPU time (min.) 5.2 59.9 118.6 233.4 463.0 926.4

Table 2: M-SAP on instance "39-16" varying ξ, best values in bold

Table 3 provides the computation results for the instance set R. The first three instances were

easily solved by all the three algorithms. The fourth instance, while solved to optimality by

L1SAP , proved to be difficult for LGQAP, and reached the imposed time limit of two hours be-

fore fully exploring the branch-and-bound tree. M-SAP with ξ = 10 always obtains the optimum

when L1SAP does, but requires shorter average computational times and yields better results on

the instances where an optimal solution was not found.

In Table 4 we report results produced by the heuristic with five different ξ values in the set

Ξ = {10, 20, 40, 80, 160}. The heuristic exhibits a stable behavior since the quality of the solutions

does not improve significantly when longer computational times are allowed. The solution quality

index was computed as follows: let be c∗i the minimum solution value obtained for a given instance

i over all runs for ξ ∈ Ξ, and let cχ
i be the solution value of instance i with ξ = χ; the average of

the values 100× cχ
i /c∗i is our solution quality index for the choice ξ = χ.
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M-SAP - ξ = 10 L1SAP -CPLEX LGQAP-CPLEX
Instance Solution Time Solution Time Gapa Solution Time Gapa

code (min.) (min.) (%) (min.) (%)
15-10-75 14688 1.1 14688 0.6 0.0 14688 19.1 0.0
20-05-65 7812 1.2 7812 1.2 0.0 7812 4.5 0.0
20-10-65 18804 3.0 18804 8.4 0.0 18804 46.9 0.0
20-10-75 19476 2.8 19476 61.2 0.0 21034 120.0 26.0
22-11-85 33456 4.1 34764 120.0 36.0 38254 120.0 32.1
25-15-60 36782 6.0 40834 120.0 75.9 49728 120.2 83.8
25-15-70 43182 5.9 45250 120.0 69.3 49600 120.2 74.7
25-15-80 49480 6.8 52432 120.0 74.2 59842 120.2 75.0
25-15-90 62438 11.3 63644 120.0 54.0 78232 120.2 69.4
30-15-70 63178 8.6 69940 120.0 82.7 91470 120.3 88.9
Average 5.1 79.2 91.1

Table 3: Random generated instances, best values in bold
a - The gap is computed with respect to the value of the linear relaxation as (upper bound - lower bound)/upper bound.

ξ

Instance code 10 20 40 80 160
15-10-75 14688 14688 14688 14688 14688
20-05-65 7812 7812 7812 7812 7812
20-10-65 18804 18804 18804 18804 18804
20-10-75 19476 19476 19476 19476 19476
22-11-85 33456 33456 33456 33456 33456
25-15-60 36782 36782 36568 36568 36568
25-15-70 43182 43012 41876 41876 41876
25-15-80 49480 49276 49276 49276 49276
25-15-90 62438 61886 61886 61886 61886
30-15-70 63178 63178 61646 61646 61442
Average CPU time (min.) 5.1 10.1 20.2 40.0 79.9
Solution quality 100.78 100.61 100.03 100.03 100.00

Table 4: M-SAP sensitivity to ξ on instance set R, best values in bold

5 Conclusions

We have described, formulated and solved the service allocation problem, a difficult combinatorial

problem arising in the tactical management of container ports. We have developed a memetic

heuristic for the problem. To test the heuristic two linearizations of the SAP were implemented

in CPLEX. The solution values provided by the heuristic were compared on small instances to

the optimal values generated by the exact formulations. On these instances our heuristic always

yields optimal solutions. On larger instances it always outperforms the truncated CPLEX branch-

and-bound algorithm applied to the two exact formulations. These computational results confirm

that the heuristic can be used to handle real-life SAP instances. Therefore, the heuristic fills the

gap between the large amount of data that can be gathered by the terminal information system

and the current practice where the SAP decisions are made by rules of thumb.
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