Decomposition Methods for Network Design

Bernard Gendron*

May 12, 2010

Spring School on Supply Chain and Transportation Network Design

* CIRRELT and Département d'informatique et de recherche opérationnelle, Université de Montréal, Canada

Outline

Introduction to network design

Multicommodity capacitated fixed-charge network design Lagrangian relaxation Cutting-plane method

Structured Dantzig-Wolfe decomposition for network design Reformulations and polyhedral results Stabilized structured Dantzig-Wolfe decomposition Computational results

Conclusions

Network design

- Network with multiple commodities
- Each commodity flows between supply and demand points
- ▶ Minimization of a "complex" (non-convex) objective function
 - Tradeoff between transportation and investment costs
 - Transportation costs: not necessarily linear, can be piecewise linear
 - Investment costs: "fixed" cost for building, renting, operating "facilities" at nodes or arcs of the network
- ► Additional constraints: budget, capacity, topology, reliability,...
- Variants:
 - Centralized / Decentralized
 - ► Static / Dynamic
 - Determinist / Stochastic
 - Strategic / Tactical / Operational

Infrastructure network design: strategic planning

- ▶ Planning horizon: years
- ▶ Decisions: invest in building roads, warehouses, plants,...
- ► Typical assumptions:
 - Central control
 - Static network
 - Linear transportation costs
 - Fixed costs for investment decisions
 - Usually no capacities
 - Known demands based on average values
- Robustness is an issue: stochastic demands?

Service network design: tactical planning

- ▶ Planning horizon: months
- ▶ Decisions: establish or not "services" (vehicles moving between two points) + flows-inventories
- Dynamic network: space-time expansion
 - Node = location-period
 - Transportation arc = (location1-period1, location2-period2) = moving from location1 to location2 in time (period2-period1)
 - ► Inventory arc = (location-period, location-period+1) = holding inventory at location between two consecutive periods
- Typical assumptions:
 - Central control
 - Linear inventory-transportation costs
 - Fixed costs for service decisions
 - Service capacities
 - Known demands

Adaptive network design: operational planning

- ▶ Planning horizon: days
- ▶ Decisions: operate or not "facilities" (warehousing or parking space) for fast product delivery + how many vehicles to use on each arc
- ► Typical assumptions:
 - Central control
 - Dynamic network
 - Piecewise linear transportation costs
 - Fixed costs for facility decisions
 - Facility and vehicle capacities
 - Known demands

Multicommodity capacitated network design

- ▶ Directed network G = (N, A), with node set N and arc set A
- ▶ Commodity set K: known demand d^k between origin O(k) and destination D(k) for each $k \in K$
- ▶ Unit transportation cost c_{ij} on each arc (i,j)
- ▶ Capacity u_{ij} on each arc (i,j)
- ▶ Cost f_{ij} for each capacity unit installed on arc (i, j)

Problem formulation

$$Z = \min \sum_{(i,j) \in A} \sum_{k \in K} c_{ij} d^k x_{ij}^k + \sum_{(i,j) \in A} f_{ij} y_{ij}$$

$$\sum_{j \in N_{i}^{+}} x_{ij}^{k} - \sum_{j \in N_{i}^{-}} x_{ji}^{k} = \begin{cases} 1, & i = O(k) \\ -1, & i = D(k) \\ 0, & i \neq O(k), D(k) \end{cases} \quad i \in N, \ k \in K$$

$$\sum_{k \in K} d^{k} x_{ij}^{k} \le u_{ij} y_{ij} \quad (i, j) \in A$$

$$0 \le x_{ij}^{k} \le 1 \quad (i, j) \in A, \ k \in K$$

$$y_{ij} \ integer \quad (i, j) \in A$$

Extensions

- ▶ Fixed-charge: $0 \le y_{ij} \le 1$ $(i,j) \in A$
- ▶ Asset-balance constraints: $\sum_{j \in N_i^+} y_{ij} \sum_{j \in N_i^-} y_{ji} = 0$ $i \in N$
- ▶ Non-bifurcated flows: x_{ij}^k integer $(i,j) \in A, k \in K$
- Piecewise linear arc flow costs
- ▶ Multifacility design: several facilities $t \in T_{ij}$ on each arc, each with capacity u_{ij}^t and cost f_{ij}^t

Multicommodity capacitated fixed-charge network design

- ▶ Directed network G = (N, A), with node set N and arc set A
- ▶ Commodity set K: known demand d^k between origin O(k) and destination D(k) for each $k \in K$
- ▶ Unit transportation cost c_{ij} on each arc (i,j)
- ▶ Capacity u_{ij} on each arc (i,j)
- ► Fixed charge f_{ij} incurred whenever arc (i, j) is used to transport some commodity units

Problem formulation (MCND)

$$Z = \min \sum_{(i,j) \in A} \sum_{k \in K} c_{ij} x_{ij}^{k} + \sum_{(i,j) \in A} f_{ij} y_{ij}$$

$$\sum_{j \in N_{i}^{+}} x_{ij}^{k} - \sum_{j \in N_{i}^{-}} x_{ji}^{k} = \begin{cases} & d^{k}, & i = O(k) \\ & - d^{k}, & i = D(k) \\ & 0, & i \neq O(k), D(k) \end{cases} i \in N, \ k \in K$$

$$\sum_{k \in K} x_{ij}^{k} \le u_{ij} y_{ij} \quad (i,j) \in A$$

$$x_{ij}^{k} \ge 0 \quad (i,j) \in A, \ k \in K$$

 $y_{ii} \in \{0,1\} \quad (i,j) \in A$

Developing solution methods for MCND: why?

- Generic problem: methods can be adapted to many similar network design applications
- ▶ But why "develop solution methods": simply use a black-box solver!
- Things are not so simple:
 - ► LP relaxations are weak (typically, more than 20% gap w.r.t. optimal value)
 - LP relaxations can be hard to solve when the number of commodities is large: degeneracy
 - Combinatorial explosion
 - Dominant factors in increasing the complexity of a problem: high fixed charges + tight capacities + large number of commodities
- Two main classes of methods:
 - Mathematical programming
 - Metaheuristics

Overview of solution methods for MCND

- Mathematical programming
 - ► Lagrangian relaxation: Gendron, Crainic 1994; Gendron, Crainic, Frangioni 1998; Holmberg, Yuan 2000; Crainic, Frangioni, Gendron 2001; Sellmann, Kliewer, Koberstein 2002; Kliewer, Timajev 2005; Bektas, Crainic, Gendron 2009
 - Cutting-plane methods: Chouman, Crainic, Gendron 2009
 - Benders decomposition: Costa, Cordeau, Gendron 2009
- Metaheuristics
 - ► Tabu search: Crainic, Farvolden, Gendreau 2000; Crainic, Gendreau 2002; Crainic, Gendreau, Ghamlouche 2003, 2004
- Hybrid algorithms
 - Slope scaling with long-term memory: Crainic, Gendron, Hernu 2004

Strong formulation

$$Z = \min \sum_{(i,j) \in A} \sum_{k \in K} c_{ij} x_{ij}^k + \sum_{(i,j) \in A} f_{ij} y_{ij}$$

$$\begin{split} \sum_{j \in N_{i}^{k}} x_{ij}^{k} - \sum_{j \in N_{i}^{-}} x_{ji}^{k} &= \begin{cases} &d^{k}, & i = O(k) \\ &- d^{k}, & i = D(k) \\ &0, & i \neq O(k), D(k) \end{cases} & i \in N, \ k \in K \quad (\pi_{i}^{k}) \\ &\sum_{k \in K} x_{ij}^{k} \leq u_{ij}y_{ij} \quad (i,j) \in A \quad (\alpha_{ij}) \\ &x_{ij}^{k} \leq b_{ij}^{k}y_{ij} \quad (i,j) \in A, \ k \in K \quad (\beta_{ij}^{k}) \\ &x_{ij}^{k} \geq 0 \quad (i,j) \in A, \ k \in K \end{split}$$

$$y_{ij} \in \{0,1\} \quad (i,j) \in A$$

Shortest path relaxation

$$Z(\alpha, \beta) = \min \sum_{(i,j) \in A} \sum_{k \in K} (c_{ij} + \alpha_{ij} + \beta_{ij}^k) x_{ij}^k$$
$$+ \sum_{(i,j) \in A} (f_{ij} - u_{ij}\alpha_{ij} - \sum_{k \in K} b_{ij}^k \beta_{ij}^k) y_{ij}$$

$$\sum_{j \in N_i^+} x_{ij}^k - \sum_{j \in N_i^-} x_{ji}^k = \begin{cases} & d^k, & i = O(k) \\ & - d^k, & i = D(k) \\ & 0, & i \neq O(k), D(k) \end{cases} i \in N, \ k \in K$$

$$y_{ij} \in \{0,1\} \quad (i,j) \in A$$

Knapsack relaxation

$$Z(\pi) = \min \sum_{(i,j) \in A} \sum_{k \in K} (c_{ij} + \pi_i^k - \pi_j^k) x_{ij}^k + \sum_{(i,j) \in A} f_{ij} y_{ij} + \sum_{k \in K} d^k (\pi_{D(k)}^k - \pi_{O(k)}^k)$$

$$\sum_{k \in K} x_{ij}^k \le u_{ij} y_{ij} \quad (i,j) \in A$$

$$x_{ij}^k \le b_{ij}^k y_{ij} \quad (i,j) \in A, \ k \in K$$

$$x_{ij}^k \ge 0 \quad (i,j) \in A, \ k \in K$$

 $y_{ii} \in \{0,1\} \quad (i,j) \in A$

Theoretical and computational results

- Both Lagrangian relaxations provide the same lower bound as the strong LP relaxation
- ▶ Lower bound within 9% of optimality on average
- ➤ To find (near-)optimal Lagrangian multipliers, two classes of methods have been traditionally used:
 - Subgradient methods
 - Bundle methods
- Our computational results show that:
 - Bundle methods are much more robust
 - Bundle methods converge faster
 - ► Any of these two methods converge much faster than solving the strong LP relaxation with the simplex method

Cutting-plane method: motivations

- Starting with the weak LP relaxation, iteratively add violated valid inequalities:
 - ▶ To be more efficient: keep the problem size as small as possible
 - ▶ To be more effective: improve the lower bound
- ▶ But the black-box solver already does that, so why not simply use it?
- ▶ True, but we can be more efficient and more effective by exploiting the structure of MCND
- ▶ Five classes of valid inequalities:
 - Strong inequalities (SI)
 - Cover inequalities (CI)
 - Minimum cardinality inequalities (MCI)
 - ► Flow cover inequalities (FCI)
 - Flow pack inequalities (FPI)

Computational results

► Comparison with CPLEX

		CI			FCI		All		
	gap	cpu	cuts	gap	cpu	cuts	gap	cpu	cuts
CPLEX Cutting-Plane	5.40% 8.54%	0.6% 1.4%	10 27	23.17% 26.25%	70.9% 28.6%		23.20% 27.98%	72.5% 12.6%	306 1537

Computational results

► Comparison with CPLEX

		CI			FCI		All		
	gap	сри	cuts	gap	cpu	cuts	gap	cpu	cuts
CPLEX Cutting-Plane	5.40% 8.54%	0.6% 1.4%	10 27	23.17% 26.25%	70.9% 28.6%	305 766	23.20% 27.98%	72.5% 12.6%	306 1537

► Comparison between valid inequalities

	Non	e+	Al	l-
	gap	сри	gap	cpu
Ø	0%	0%	27.98%	12.6%
SI	26.53%	7.3%	26.97%	30.0%
CI	8.54%	1.4%	27.92%	12.8%
MCI	8.00%	1.4%	27.97%	12.6%
FCI	26.25%	28.6%	27.97%	10.9%
FPI	26.75%	32.9%	27.94%	10.5%

Branch-and-cut algorithm

- ► Apply the cutting-plane method at every node of the B&B tree
- Generate Benders feasibility cuts along the tree
- ► Add pre- and post-processing at every node to reduce the size of the solution space
- Apply a variant of strong branching
- ► The resulting B&C algorithm is:
 - ▶ Much better than CPLEX B&C using the weak LP relaxation
 - ▶ Much better than CPLEX B&C using the strong LP relaxation
 - Competitive with CPLEX B&C using the cutting-plane LP relaxation
- ► How does it compare with state-of-the-art Lagrangian-based B&B?

General integer formulation (I)

$$\min \sum_{k \in K} \sum_{(i,j) \in A} d^k c_{ij} x_{ij}^k + \sum_{(i,j) \in A} f_{ij} y_{ij}$$

$$\sum_{j \in N} x_{ij}^{k} - \sum_{j \in N} x_{ji}^{k} = \begin{cases} & 1, & \text{if } i = O(k) \\ & -1, & \text{if } i = D(k) \\ & 0, & \text{if } i \neq O(k), D(k) \end{cases} \quad \forall i \in N, k \in K$$

$$\sum_{k \in K} d^{k} x_{ij}^{k} \le u_{ij} y_{ij} \quad \forall (i, j) \in A$$

$$0 \le x_{ij}^{k} \le 1 \quad \forall (i, j) \in A, k \in K$$

$$y_{ij} \geq 0 \quad \forall (i,j) \in A$$

$$y_{ii}$$
 integer \forall $(i, j) \in A$

Lagrangian relaxation of flow conservation

$$\begin{aligned} \min \sum_{k \in K} \sum_{(i,j) \in A} (d^k c_{ij} - \pi_i^k + \pi_j^k) x_{ij}^k + \sum_{(i,j) \in A} f_{ij} y_{ij} + \sum_{k \in K} \pi_{O(k)}^k - \pi_{D(k)}^k \\ \sum_{k \in K} d^k x_{ij}^k \le u_{ij} y_{ij} \quad \forall \ (i,j) \in A \\ 0 \le x_{ij}^k \le 1 \quad \forall \ (i,j) \in A, \ k \in K \\ y_{ij} \ge 0 \quad \forall \ (i,j) \in A \end{aligned}$$

 y_{ii} integer $\forall (i, j) \in A$

- Lagrangian subproblem decomposes by arc
- ightharpoonup Easy (pprox 2 continuous knapsack) but *no* integrality property

Residual capacity inequalities

- ▶ For any $P \subseteq K$, define $d^P = \sum_{k \in P} d^k$
- ▶ Then, for any $(i, j) \in A$, define

Residual capacity inequalities

$$\sum_{k\in P}\{a_{ij}^k(1-x_{ij}^k)\}\geq r_{ij}^P(q_{ij}^P-y_{ij})\quad\forall (i,j)\in A,\ P\subseteq K$$

- ► Characterize the convex hull of solutions to the Lagrangian subproblem (Magnanti, Mirchandani, Vachani 1993)
- ▶ Separation can be performed in O(|A||K|) (Atamtürk, Rajan 2002)

Multiple choice model

$$y_{ij} \leq \left\lceil rac{\sum_{k \in K} d^k}{u_{ij}}
ight
ceil = T_{ij}$$
 $S_{ij} = \{1, \dots, T_{ij}\}$ $Y_{ij}^s = \left\{egin{array}{c} 1, & ext{if } y_{ij} = s \ 0, & ext{otherwise} \end{array}
ight. orall s \in S_{ij}$ $X_{ij}^s = \left\{egin{array}{c} \sum_{k \in K} d^k x_{ij}^k, & ext{if } y_{ij} = s \ 0, & ext{otherwise} \end{array}
ight. orall s \in S_{ij}$

Binary formulation (B)

$$egin{aligned} y_{ij} &= \sum_{s \in S_{ij}} sy^s_{ij} \quad orall (i,j) \in A \ &\sum_{k \in K} d^k x^k_{ij} = \sum_{s \in S_{ij}} x^s_{ij} \quad orall (i,j) \in A \ &(s-1)u_{ij}y^s_{ij} \leq x^s_{ij} \leq su_{ij}y^s_{ij} \quad (i,j) \in A, s \in S_{ij} \ &\sum_{s \in S_{ij}} y^s_{ij} \leq 1 \quad (i,j) \in A \ &y^s_{ij} \geq 0 \quad (i,j) \in A, s \in S_{ij} \ &y^s_{ii} \; integer \quad (i,j) \in A, s \in S_{ij} \end{aligned}$$

Variable disaggregation and extended formulation (B^+)

Extended auxiliary variables

$$egin{aligned} x_{ij}^{ks} &= \left\{ egin{array}{ll} x_{ij}^k, & if \ y_{ij} &= s \ 0, & otherwise \end{array}
ight. orall \ s \in S_{ij} \ & \ x_{ij}^k &= \sum_{s \in S_{ij}} x_{ij}^{ks} \quad orall (i,j) \in A, k \in K \ & \ x_{ij}^s &= \sum_{k \in K} d^k x_{ij}^{ks} \quad orall (i,j) \in A, s \in S_{ij} \end{aligned}$$

Extended linking inequalities

$$x_{ij}^{ks} \leq y_{ij}^{s} \quad \forall (i,j) \in A, k \in K, s \in S_{ij}$$

Polyhedral results: notation

- ightharpoonup F(M): feasible set for model M
- ightharpoonup conv(F(M)) : convex hull of F(M)
- ▶ LP(M) : LP relaxation for model M
- ► LS(M): Lagrangian subproblem (relaxation of flow conservation constraints)
- ▶ LD(M): Lagrangian dual for LS(M)

Polyhedral results

- ▶ LD(I) and $LD(B^+)$ are equivalent
- ► $F(LP(LS(B^+))) = conv(F(LS(B^+)))$ (Croxton, Gendron, Magnanti 2007)
- ▶ $LP(B^+)$ and $LD(B^+)$ are equivalent
- ► LP(B⁺) and LD(I) are equivalent
- $I^+ = I + residual capacity inequalities$
- ▶ $LP(B^+)$ and $LP(I^+)$ are equivalent (Frangioni, Gendron 2009)

Reformulations and decomposition

"Structured" MIP:

(P)
$$\min_{x} \{ cx : Ax = b, x \in X \}$$

$$(P_{\alpha}) \qquad Z(\alpha) = \min_{x} \{ cx + \alpha(b - Ax) : x \in X \}$$

"significantly easier" than (P)

Lagrangian dual:

where

$$(LD)\max_{\alpha}\{\ Z(\alpha)\ \}=\min_{x}\{\ cx:\ Ax=b\ ,\ x\in conv(X)\ \}(LP)$$

Reformulation:

$$conv(X) = \{ x = C\theta : \Gamma\theta \le \gamma \}$$

- Examples:
 - ► Dantzig-Wolfe Reformulation (*DW*)
 - Extended Formulation (B⁺)

Structured DW decomposition: assumptions

Assumption 1 (reformulation):

$$conv(X) = \{ x = C\theta : \Gamma\theta \le \gamma \}$$

► Assumption 2 (padding with zeroes):

$$\begin{split} & \Gamma_{\mathcal{B}} \bar{\theta}_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \ \ \, \Rightarrow \Gamma \left[\bar{\theta}_{\mathcal{B}}, 0 \right] \leq \gamma \\ \\ \Rightarrow & X_{\mathcal{B}} = \left\{ \ \ x = C_{\mathcal{B}} \theta_{\mathcal{B}} \ \, : \ \, \Gamma_{\mathcal{B}} \theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \ \, \right\} \subseteq conv(X) \end{split}$$

▶ Assumption 3 (easy update of variables and constraints): Given \mathcal{B} , $\bar{x} \in conv(X)$ s.t. $\bar{x} \notin X_{\mathcal{B}}$, it is "easy" to find $\mathcal{B}' \supset \mathcal{B}$ and $\Gamma_{\mathcal{B}'}$, $\gamma_{\mathcal{B}'}$ such that $\exists \ \mathcal{B}'' \supseteq \mathcal{B}'$ such that $\bar{x} \in X_{\mathcal{B}''}$.

Structured DW decomposition: algorithm

- ▶ Finitely terminates with an optimal solution of (LP)
- lacktriangle . . . even if (proper) removal of indices from ${\cal B}$ is allowed

Structured DW and other decomposition methods

- Generalizes DW, whose unstructured model is identical for all applications (except when exploiting disaggregation)
- Substantially different from both RG (Row Generation) and DW

Stability issues in (structured)DW

- ▶ The next $\tilde{\alpha}$ can be very far from the current one
- In general, the sequence of $\tilde{\alpha}$ is unstable, has no locality properties and convergence speed does not improve near the optimum
- ▶ Counter-measure: use a Proximal Point method defined by a stabilizing term \mathcal{D}_t , depending on the current $\tilde{\alpha}$ and proximal parameter(s) t

Some stabilizing terms

Stabilized structured DW algorithm

- Exactly the same as stabilizing DW!
- ▶ Stabilized DW = Proximal Point + Column Generation (= Bundle, Frangioni 2002)
- Even simpler from the primal viewpoint:

$$\min \left\{ \; cx - \tilde{\alpha}z + \mathcal{D}_t^*(-z) \; : \; z = Ax - b \; , \; x = \textit{C}_{\mathcal{B}}\theta_{\mathcal{B}} \; , \; \Gamma_{\mathcal{B}}\theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \; \right\}$$

- lacktriangle With proper choice of \mathcal{D}_t^* , this is still a linear program
- ▶ Dual optimal variables of "z = Ax b" still give $\tilde{\alpha}$
- Convergence theory basically the same as in (Frangioni 2002)

Summary of Approaches

- ► *I*⁺: Cutting-plane with exponential number of constraints, but easy separation
- StabDW: Bundle for DW with exponential number of variables, but easy pricing
- ➤ StructDW: Structured DW for LP(B⁺) with pseudo-polynomial number of variables and constraints
- \triangleright S_2DW_2 : Stabilized Structured DW with quadratic penalty
- \triangleright S_2DW_1 : Stabilized Structured DW with trust region
- ► S₂DW₁-ws²: Stabilized Structured DW with trust region and subgradient optimization warmstart

Computational experiments

- ▶ Large-scale instances ($|K| \in \{100, 200, 400\}$), very difficult
- ho $C=1\Rightarrow$ lightly capacitated, $C=16\Rightarrow$ tightly capacitated
- ► Solving the root relaxation, then freezing the formulation + CPLEX polishing for one hour
- ▶ Unlike I+, frozen B+ formulations may not contain optimal solution
 ⇒ final gap ≈ quality of obtained formulation
- ▶ imp = lower bound improvement (equal for all) gap = final gap (%), cpu = time, it = iterations

Sample computational results (|K| = 100)

	Probl	em		1+		Sta	bDW	Sti	ructDW	/
A	С	imp	cpu	gap	it	cpu	it	cpu	gap	it
517	1	187.00	348	5.78	26	4323	88144	296	6.94	55
	4	138.22	362	6.42	25	3581	79390	312	7.48	44
	8	100.08	305	6.12	21	4054	88807	633	6.11	61
	16	60.49	249	6.20	21	3015	71651	1138	6.45	87
517	1	155.19	140	3.95	23	2899	69500	188	4.70	60
	4	122.84	194	3.87	26	2799	65229	147	4.15	39
	8	93.00	151	3.96	20	2824	66025	355	4.31	67
	16	59.68	116	4.72	18	2172	56184	551	4.94	70
669	1	114.50	80	0.50	26	330	11273	36	0.46	32
	4	97.32	78	0.46	22	327	10951	66	0.46	50
	8	79.62	68	0.46	19	323	11173	55	0.46	33
	16	56.19	58	0.74	19	275	9979	164	0.81	65

Sample computational results (|K| = 200)

	Prob	lem		1+		Sta	bDW	St	ructDW	/
A	С	imp	cpu	gap	it	cpu	it	cpu	gap	it
229	1	205.67	49081	28.16	109	11748	154821	525	10.50	44
	4	131.24	30899	25.40	91	9132	131674	807	13.58	45
	8	84.61	16502	21.80	87	12682	162766	1593	10.17	44
	16	42.78	2090	5.59	54	6541	97952	2630	9.20	73
229	1	185.17	18326	20.53	86	9261	132963	380	7.44	39
	4	125.39	15537	18.81	80	11791	147879	612	9.36	49
	8	85.31	9500	13.08	74	10702	146727	1647	8.87	68
	16	46.09	1900	7.19	52	7268	107197	3167	7.99	108
287	1	198.87	14559	27.86	66	8815	120614	598	12.54	53
	4	136.97	11934	22.52	62	8426	112308	603	15.07	37
	8	92.94	9656	15.28	64	10098	130536	1221	10.38	41
	16	53.45	3579	11.60	54	6801	98972	3515	9.06	99

Sample computational results (|K| = 400)

	Prob	lem	Stab	DW	St	ructDW	
A	С	imp	cpu	it	cpu	gap	it
519	1	100.83	87695	248746	9839	9.96	157
	4	92.54	88031	247864	9087	11.25	140
	8	82.16	88918	258266	11613	8.47	143
	16	65.53	85384	238945	38617	10.26	242
519	1	125.07	93065	258054	22246	14.90	165
	4	111.02	90573	250854	17976	18.22	131
	8	94.82	93418	256884	30460	18.18	159
	16	71.31	93567	265663	74447	16.50	176
668	1	126.02	98789	246702	23771	11.89	149
	4	115.29	99014	247620	28567	10.97	176
	8	102.03	104481	258636	27871	12.07	130
	16	80.96	103011	278905	58363	13.95	156

Some preliminary conclusions

- ▶ DW unbearably slow, and disaggregating does not help enough
- ▶ Stabilized DW ≡ bundle much better, but only aggregated
- ▶ SDW worsens as C grows (tighter capacities), RG the converse
- ► SDW generally better, but times and gaps are still large ⇒ Stabilized SDW seems promising

Computational experiments on stabilized SDW

- ▶ No removal/aggregation for \mathcal{B} , fixed t (class-specific tuning)
- Different stabilizing terms: quadratic penalty vs trust region (QP vs LP)
- ▶ Different warm-start: "standard" MCF initialization (used for all) vs MCF + subgradient warm-start (few iterations, class-specific tuning)
- ▶ gap = final gap (%), cpu = time, it = iterations, ss = serious steps

Sample computational results (|K| = 100)

	Stri	uctDV	V	S ² DW ₂					S ² DV	V_1		S ² DW ₁ –ws ²			
C	cpu	gap	it	cpu	gap	it	SS	cpu	gap	it	SS	cpu	gap	it	SS
1	296	6.94	55	16380	6.57	51	15	223	2.97	66	58	357	1.52	91	84
4	312	7.48	44	17091	5.87	47	12	298	2.72	70	54	270	1.48	69	60
8	633	6.11	61	22176	7.16	37	14	280	2.70	64	34	277	1.44	65	47
16	1138	6.45	87	27033	6.08	43	18	190	2.78	60	21	119	1.52	40	18
1	188	4.70	60	5802	4.01	42	13	205	2.56	71	57	222	1.43	85	71
4	147	4.15	39	6453	4.32	39	15	215	2.43	79	40	91	1.39	41	36
8	354	4.31	67	5752	4.40	31	12	167	2.38	62	25	124	1.42	50	21
16	551	4.94	70	10154	5.07	40	14	163	2.76	61	20	113	1.53	50	19
1	36	0.46	32	2405	0.46	47	15	84	0.41	76	48	78	0.33	72	66
4	66	0.46	50	1964	0.46	45	14	67	0.41	74	24	81	0.33	73	56
8	55	0.46	33	1974	0.46	44	15	50	0.41	57	18	40	0.33	49	20
16	164	0.81	65	1408	0.80	38	17	47	0.61	52	16	44	0.40	52	22

Sample computational results (|K| = 200)

	St	ructDV	V		S ² DW ₂	2		9	S ² DW	' 1		S	2		
С	cpu	gap	it	cpu	gap	it	SS	cpu	gap	it	SS	cpu	gap	it	SS
1	525	10.50	44	1.8e4	12.11	32	17	860	4.16	76	73	907	1.32	129	119
4	807	13.58	45	2.7e4	10.20	29	15	1091	2.79	89	87	1460	1.23	126	118
8	1593	10.17	44	8.3e4	10.12	40	17	1027	3.03	78	61	1237	1.20	99	77
16	2630	9.20	73	1.1e5	9.21	54	16	399	2.12	65	31	804	1.02	114	73
1	380	7.44	39	1.0e4	****	29	14	557	2.61	80	71	592	1.30	101	95
4	612	9.36	49	1.3e4	10.33	25	15	755	2.87	80	68	930	1.22	98	95
8	1647	8.87	68	3.3e4	10.61	30	14	468	2.75	50	43	761	1.33	83	66
16	3167	7.99	108	7.0e4	8.32	47	17	476	2.22	67	30	357	1.10	53	39
1	598	12.54	53	2.1e4	16.31	39	15	1019	3.92	98	93	1327	1.65	149	143
4	603	15.07	37	1.8e4	13.78	27	15	1001	3.72	90	79	891	1.60	98	94
8	1221	10.38	41	5.2e4	11.81	29	14	909	3.68	73	50	1040	1.63	102	96
16	3515	9.06	99	1.3e5	10.11	54	17	513	2.93	59	25	555	1.26	62	45

Sample computational results (|K| = 400)

	St	ructDW			S ² DW	₁		S^2DW_1 –ws ²			
С	cpu	gap	it	cpu	gap	it	SS	cpu	gap	it	SS
1	9839	9.96	157	2473	2.23	76	55	1857	2.31	53	38
4	9087	11.25	140	2140	2.33	68	54	2487	2.36	66	44
8	11613	8.47	143	2338	2.45	66	45	1813	2.30	52	30
16	38617	10.26	242	3403	2.66	77	39	2570	2.26	58	23
1	22246	14.90	165	4811	3.31	87	76	4668	3.06	66	55
4	17976	18.22	131	4324	2.57	77	64	4373	3.19	66	45
8	30460	18.18	159	5224	3.14	85	60	4209	2.86	57	36
16	74447	16.50	176	5532	3.14	67	46	5191	3.02	64	23
1	23771	11.89	149	9215	2.96	97	78	6815	3.01	69	56
4	28567	10.97	176	6766	2.99	79	63	6506	3.07	69	45
8	27871	12.07	130	7560	2.67	87	56	5765	2.78	61	37
16	58363	13.95	156	8626	3.14	83	45	3764	2.95	41	18

Current research and future trends

- Adaptive network design (Gendron, Semet 2009)
- ► Integrating uncertainty: stochastic programming (Crainic, Gendreau, Rei, Wallace 2009)
- Decentralized / collaborative network design
- On the methodological side:
 - Alternative formulations based on paths/circuits and (multi)-cutsets
 - Decomposition methods involving column and cut generation within B&B: B&C&P
 - Hybrid algorithms combining mathematical programming and metaheuristics
 - Parallel computing (especially for large-scale adaptive and stochastic network design)