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Network design

» Network with multiple commodities
» Each commodity flows between supply and demand points
» Minimization of a “complex” (non-convex) objective function
» Tradeoff between transportation and investment costs
» Transportation costs: not necessarily linear, can be piecewise
linear
» Investment costs: “fixed” cost for building, renting, operating
“facilities” at nodes or arcs of the network
» Additional constraints: budget, capacity, topology, reliability,...
» Variants:
» Centralized / Decentralized
» Static / Dynamic
» Determinist / Stochastic
» Strategic / Tactical / Operational



Infrastructure network design: strategic planning

» Planning horizon: years

» Decisions: invest in building roads, warehouses, plants,...
» Typical assumptions:
» Central control
Static network
Linear transportation costs
Fixed costs for investment decisions
Usually no capacities
Known demands based on average values
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» Robustness is an issue: stochastic demands?



Service network design: tactical planning

» Planning horizon: months

» Decisions: establish or not “services” (vehicles moving
between two points) + flows-inventories
» Dynamic network: space-time expansion

» Node = location-period
» Transportation arc = (locationl-periodl, location2-period2) =
moving from locationl to location2 in time (period2-periodl)
» Inventory arc = (location-period, location-period+1) =
holding inventory at location between two consecutive periods
» Typical assumptions:
Central control
Linear inventory-transportation costs
Fixed costs for service decisions
Service capacities
Known demands
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Adaptive network design: operational planning

» Planning horizon: days

» Decisions: operate or not “facilities” (warehousing or parking
space) for fast product delivery + how many vehicles to use
on each arc

» Typical assumptions:

>
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Central control

Dynamic network

Piecewise linear transportation costs
Fixed costs for facility decisions
Facility and vehicle capacities
Known demands



Multicommodity capacitated network design

v

Directed network G = (N, A), with node set N and arc set A

Commodity set K: known demand d* between origin O(k)
and destination D(k) for each k € K

Unit transportation cost c;; on each arc (i, )

v

v
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Capacity wjj on each arc (i, )

v

Cost f;j for each capacity unit installed on arc (i,;)



Problem formulation
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Extensions

> Fixed-charge: 0 <y; <1 (i,j)€eA

> Asset-balance constraints: >+ yjj — ZjeN,f yi=0 ieN
> Non-bifurcated flows: x integer (i,j) € A, k € K

> Piecewise linear arc flow costs

» Multifacility design: several facilities t € Tj; on each arc, each

with capacity uj; and cost f



Multicommodity capacitated fixed-charge network design

» Directed network G = (N, A), with node set N and arc set A

» Commodity set K: known demand d* between origin O(k)
and destination D(k) for each k € K

» Unit transportation cost cj; on each arc (i, )
» Capacity uj on each arc (i, )

» Fixed charge f;; incurred whenever arc (i, ) is used to
transport some commodity units



Problem formulation (MCND)

Z=min > > cpxp+ D fiyy
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Developing solution methods for MCND: why?

» Generic problem: methods can be adapted to many similar
network design applications

» But why “develop solution methods”: simply use a black-box
solver!
» Things are not so simple:
> LP relaxations are weak (typically, more than 20% gap w.r.t.
optimal value)
> LP relaxations can be hard to solve when the number of
commodities is large: degeneracy
» Combinatorial explosion
» Dominant factors in increasing the complexity of a problem:
high fixed charges + tight capacities + large number of
commodities

» Two main classes of methods:

» Mathematical programming
» Metaheuristics



Overview of solution methods for MCND

» Mathematical programming
» Lagrangian relaxation: Gendron, Crainic 1994; Gendron,
Crainic, Frangioni 1998; Holmberg, Yuan 2000; Crainic,
Frangioni, Gendron 2001; Sellmann, Kliewer, Koberstein 2002;
Kliewer, Timajev 2005; Bektas, Crainic, Gendron 2009
» Cutting-plane methods: Chouman, Crainic, Gendron 2009
» Benders decomposition: Costa, Cordeau, Gendron 2009
» Metaheuristics
» Tabu search: Crainic, Farvolden, Gendreau 2000; Crainic,
Gendreau 2002; Crainic, Gendreau, Ghamlouche 2003, 2004
» Hybrid algorithms

» Slope scaling with long-term memory: Crainic, Gendron, Hernu
2004



Strong formulation

Z=min > Y cxi+ D fiyy
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Shortest path relaxation

Z(a, ) = min Z Z(CU +aj + ﬁg)x
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Knapsack relaxation
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Theoretical and computational results

» Both Lagrangian relaxations provide the same lower bound as
the strong LP relaxation

» Lower bound within 9% of optimality on average

» To find (near-)optimal Lagrangian multipliers, two classes of
methods have been traditionally used:

» Subgradient methods
» Bundle methods

» Our computational results show that:
» Bundle methods are much more robust
» Bundle methods converge faster
» Any of these two methods converge much faster than solving
the strong LP relaxation with the simplex method



Cutting-plane method: motivations

» Starting with the weak LP relaxation, iteratively add violated
valid inequalities:
» To be more efficient: keep the problem size as small as possible
» To be more effective: improve the lower bound

» But the black-box solver already does that, so why not simply
use it?

> True, but we can be more efficient and more effective by
exploiting the structure of MCND
» Five classes of valid inequalities:
» Strong inequalities (SI)
» Cover inequalities (Cl)
» Minimum cardinality inequalities (MCI)
> Flow cover inequalities (FCI)
» Flow pack inequalities (FPI)



Computational results

» Comparison with CPLEX

Cl FCl All
gap cpu cuts gap cpu cuts gap cpu cuts
CPLEX 5.40% 0.6% 10 23.17% 70.9% 305 23.20% 72.5% 306
Cutting-Plane 8.54% 1.4% 27 26.25% 28.6% 766 27.98% 12.6% 1537




Computational results

» Comparison with CPLEX

Cl FCI All
gap cpu cuts gap cpu cuts gap cpu cuts
CPLEX 5.40% 0.6% 10 23.17% 70.9% 305 23.20% 72.5% 306
Cutting-Plane 8.54% 1.4% 27 26.25% 28.6% 766 27.98% 12.6% 1537
» Comparison between valid inequalities
None+ All-
gap cpu gap cpu

[] 0% 0% 27.98% 12.6%

Sl 26.53% 7.3% 26.97% 30.0%

Cl 8.54% 1.4% 27.92% 12.8%

MCI 8.00% 1.4% 27.97% 12.6%

FCI 26.25% 28.6% 27.97% 10.9%

FPI 26.75% 32.9% 27.94% 10.5%




Branch-and-cut algorithm

» Apply the cutting-plane method at every node of the B&B
tree

» Generate Benders feasibility cuts along the tree

» Add pre- and post-processing at every node to reduce the size
of the solution space

» Apply a variant of strong branching

» The resulting B&C algorithm is:

» Much better than CPLEX B&C using the weak LP relaxation

» Much better than CPLEX B&C using the strong LP relaxation

» Competitive with CPLEX B&C using the cutting-plane LP
relaxation

» How does it compare with state-of-the-art Lagrangian-based
B&B?



General integer formulation (/)
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Lagrangian relaxation of flow conservation

min Y Y (d¥cy -l +mf)xE+ D vy + Y mouy — T
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» Lagrangian subproblem decomposes by arc

» Easy (& 2 continuous knapsack) but no integrality property



Residual capacity inequalities

> For any P C K, define df =%, d*
» Then, for any (i,j) € A, define

p_d
/=,
ujj
a5 = [aj]
rj = aj — |aj)
» Residual capacity inequalities
Y A —x)} = i (af —yy) V(i.j) €A PCK

keP

» Characterize the convex hull of solutions to the Lagrangian
subproblem (Magnanti, Mirchandani, Vachani 1993)

» Separation can be performed in O(|A||K]|) (Atamtiirk, Rajan 2002)



Multiple choice model
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Binary formulation (B)
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Variable disaggregation and extended formulation (B™)

» Extended auxiliary variables
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» Extended linking inequalities
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Polyhedral results: notation

» F(M) : feasible set for model M
» conv(F(M)) : convex hull of F(M)
» LP(M) : LP relaxation for model M

v

LS(M) : Lagrangian subproblem
(relaxation of flow conservation constraints)

LD(M) : Lagrangian dual for LS(M)

v



Polyhedral results

» LD(I) and LD(B™) are equivalent

> F(LP(LS(BT))) = conv(F(LS(B™)))
(Croxton, Gendron, Magnanti 2007)

» LP(BY) and LD(B™) are equivalent
» LP(B™) and LD(!) are equivalent
» |T = | + residual capacity inequalities

» LP(B*) and LP(I") are equivalent (Frangioni, Gendron 2009)



Reformulations and decomposition
» “Structured” MIP:
(P) mXin{CX:AX:b,XEX}
where (Pa) Z(a) = mXin{ ex+alb—Ax) 1 xe X}

“significantly easier” than (P)

» Lagrangian dual:
(LD)max{ Z(a) } = min{ ex: Ax=b, x € conv(X) }(LP)
> Reformulation:
conv(X)={x=C0 : TO <~}

» Examples:

» Dantzig-Wolfe Reformulation (DW)
» Extended Formulation (B™)



Structured DW decomposition: assumptions

> Assumption 1 (reformulation):
conv(X)={x=C0 : TO <~}
> Assumption 2 (padding with zeroes):
Ms0s <y =T [05,0] <~
= Xg={x=Cgbp : Tpls <75} C conv(X)

» Assumption 3 (easy update of variables and constraints):
Given B, x € conv(X) s.t. X ¢ Xp,
it is “easy” to find B’ D B and g/, ys: such that
3 B"” D B’ such that x € Xg.



Structured DW decomposition: algorithm

(initialize B );
repeat
( solve (LPg) for X, & ; Vv = cX );
x = argmin { (c —a@A)x: x € X }; /* (Pz) */
if( V=cx+a(b—Ax) )
then STOP; /* % optimal */
else ( update B as in Assumption 3 );
until ~ STOP

» Finitely terminates with an optimal solution of (LP)

> ...even if (proper) removal of indices from B is allowed



Structured DW and other decomposition methods

» Generalizes DW, whose unstructured model is identical for all
applications (except when exploiting disaggregation)

» Substantially different from both RG (Row Generation) and DW




Stability issues in (structured)DW

» The next & can be very far from the current one

» In general, the sequence of & is unstable, has no locality properties
and convergence speed does not improve near the optimum

» Counter-measure: use a Proximal Point method defined by a
stabilizing term D;, depending on the current & and proximal
parameter(s) t



Some stabilizing terms

a penalty

D

a trust region

or both
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Stabilized structured DW algorithm

» Exactly the same as stabilizing DW!

» Stabilized DW = Proximal Point + Column Generation (= Bundle,
Frangioni 2002)

» Even simpler from the primal viewpoint:
min{ ex—az+Di(-z) : z=Ax—b, x=Cglp, lgls S’yg}
> With proper choice of Dy, this is still a linear program

» Dual optimal variables of “z = Ax — b" still give &

» Convergence theory basically the same as in (Frangioni 2002)



Summary of Approaches

» /*: Cutting-plane with exponential number of constraints, but easy
separation

» StabDW-: Bundle for DW with exponential number of variables, but
easy pricing

» StructDW: Structured DW for LP(B™) with pseudo-polynomial
number of variables and constraints

» S,DW,: Stabilized Structured DW with quadratic penalty
» S,DW;: Stabilized Structured DW with trust region

» S,DW;-ws?: Stabilized Structured DW with trust region and
subgradient optimization warmstart



Computational experiments

v

Large-scale instances (|K| € {100,200, 400}), very difficult

v

C =1 = lightly capacitated, C = 16 = tightly capacitated

v

Solving the root relaxation, then freezing the formulation

+ CPLEX polishing for one hour

v

Unlike /4, frozen B+ formulations may not contain optimal solution
= final gap ~ quality of obtained formulation

» imp = lower bound improvement (equal for all)

gap = final gap (%), cpu = time, it = iterations



Sample computational results (|K| = 100)

Problem I+
Al C imp | cpu  gap
517 1 187.00 | 348 5.78
4 138.22 | 362 6.42
8 100.08 | 305 6.12
16 60.49 | 249 6.20
517 1 155.19 | 140 3.95
4 12284 | 194 3.87
8 93.00 | 151 3.96
16 59.68 | 116 4.72
669 1 114.50 80 0.50
4  97.32 78 0.46
8  79.62 68 0.46
16 56.19 | 58 0.74

StabDW

StructDW

cpu

gap

296
312
633
1138

6.94
7.48
6.11
6.45

55
44
61
87

188
147
355
551

4.70
4.15
4.31
4.94

60
39
67
70

36
66
55
164

0.46
0.46
0.46
0.81

32
50
33
65




Sample computational results (|K| = 200)

Problem

StabDW

Al

C imp

cpu

229

1 205.67
4 131.24
8 84.61
16 42.78

49081
30899
16502

2090

229

1 185.17
4 125.39
8 85.31
16 46.09

18326
15537
9500
1900

287

1 198.87
4 136.97
8 9294
16 53.45

14559
11934
9656
3579

StructDW




Sample computational results (|K| = 400)

Problem StabDW
Al C imp cpu it
519 1 100.83 | 87695 248746
4 9254 | 88031 247864
8 82.16 | 88918 258266
65.53 | 85384 238945

StructDW

1

519 125.07 | 93065 258054
111.02 | 90573 250854

94.82 | 93418 256884

668 126.02 | 98789 246702

11529 | 99014 247620
102.03 | 104481 258636
80.96 | 103011 278905

6
1
4
8
16 71.31 | 93567 265663
1
4
8
6

1




Some preliminary conclusions

» DW unbearably slow, and disaggregating does not help enough
» Stabilized DW = bundle much better, but only aggregated
» SDW worsens as C grows (tighter capacities), RG the converse

» SDW generally better, but times and gaps are still large =
Stabilized SDW seems promising



Computational experiments on stabilized SDW

v

No removal/aggregation for B, fixed t (class-specific tuning)

v

Different stabilizing terms: quadratic penalty vs trust region (QP vs
LP)

v

Different warm-start: “standard” MCF initialization (used for all) vs

MCF + subgradient warm-start (few iterations, class-specific tuning)

v

gap = final gap (%), cpu = time, it = iterations, ss = serious steps



Sample computational results (|K| = 100)

StructDW S°DW, S°DW, S°DW;-ws?
C| cpu gap it gap ss| cpu gap it ss|cpu it ss
1| 296 6.94 55 6.57 15|223 2.97 66 58| 357 91 84
4| 312 7.48 44 5.87 121298 2.72 70 54|270 69 60
8| 633 6.11 61 7.16 14| 280 2.70 64 34|277 65 47
161138 6.45 87 6.08 18| 190 2.78 60 21|119 40 18
1| 188 4.70 60 4.01 131205 2.56 71 57| 222 85 71
4| 147 4.15 39 4.32 15|215 243 79 40| 91 41 36
8| 354 4.31 67 4.40 12| 167 2.38 62 25|124 50 21
16| 551 4.94 70 5.07 14| 163 2.76 61 20|113 50 19
1| 36 0.46 32 0.46 15| 84 0.41 76 48| 78 72 66
4| 66 0.46 50 0.46 14| 67 0.41 74 24| 81 73 56
8| 55 0.46 33 0.46 15| 50 0.41 57 18| 40 49 20
16| 164 0.81 65 0.80 17| 47 0.61 52 16| 44 52 22




Sample computational results (|K| = 200)

StructDW S°DW, S°DW, S°DW;-ws?
C| cpu gap it gap ss| cpu gap it ss| cpu it ss
1| 525 10.50 44 12.11 17| 860 4.16 76 73| 907 129 119
4| 807 13.58 45 10.20 15| 1091 2.79 89 871460 126 118
81593 10.17 44 10.12 17/1027 3.03 78 61|1237 99 77
16(2630 9.20 73 9.21 16| 399 2.12 65 31| 804 114 73
1/ 380 7.44 39 *oEEK 14| 557 2.61 80 71| 592 101 95
41 612 9.36 49 10.33 15| 755 2.87 80 68| 930 98 95
81647 8.87 68 10.61 14| 468 2.75 50 43| 761 83 66
163167 7.99 108 8.32 17| 476 2.22 67 30| 357 53 39
1| 598 12.54 53 16.31 15| 1019 3.92 98 93|1327 149 143
4| 603 15.07 37 13.78 15| 1001 3.72 90 79| 891 98 94
8(1221 10.38 41 11.81 14| 909 3.68 73 50|1040 102 96
16(3515 9.06 99 10.11 17| 513 2.93 59 25| 555 62 45




Sample computational results (|K| = 400)

StructDW S°DW; S2DW;-ws?
i cpu gap it ss cpu  gap ss
2473 223 76 55 |1857 231 38
2140 2.33 68 54 | 2487 2.36 44
2338 245 66 451813 2.30 30
3403 2.66 77 39| 2570 226 23
4811 3.31 87 76 | 4668 3.06 55
4324 257 77 64| 4373 3.19 45
5224 314 85 60 |4209 2386 36
5532 3.14 67 46 |5191 3.02 23
9215 296 97 78 | 6815 3.01 56
6766 2.99 79 63| 6506 3.07 45
7560 2.67 87 56 | 5765 2.78 37
8626 3.14 83 45 |3764 2095 18




Current research and future trends

» Adaptive network design (Gendron, Semet 2009)

> Integrating uncertainty: stochastic programming (Crainic,
Gendreau, Rei, Wallace 2009)

» Decentralized / collaborative network design
» On the methodological side:
» Alternative formulations based on paths/circuits and
(multi)-cutsets
» Decomposition methods involving column and cut generation
within B&B: B&C&P
» Hybrid algorithms combining mathematical programming and
metaheuristics
» Parallel computing (especially for large-scale adaptive and
stochastic network design)
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