
The Delivery Man Problem with Time Windows

Géraldine Heilporna,b, Jean-François Cordeaua, Gilbert Laporteb

aCanada Research Chair in Logistics and Transportation and CIRRELT, HEC Montréal,
3000 chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7

bCanada Research Chair in Distribution Management and CIRRELT, HEC Montréal,
3000 chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A.

Corresponding author: gilbert@crt.umontreal.ca

Abstract

In this paper, a variant of the Traveling Salesman Problem with Time Win-
dows is considered, which consists in minimizing the sum of travel durations
between a depot and several customer locations. Two mixed integer linear
programming formulations are presented for this problem: a classical arc
flow model and a sequential assignment model. Several polyhedral results
are provided for the second formulation, in the special case arising when
there is a closed time window only at the depot, while open time windows
are considered at all other locations. Exact and heuristic algorithms are also
proposed for the problem. Computational results show that medium size in-
stances can be solved exactly with both models, while the heuristic provides
good quality solutions for medium to large size instances.

Key words: Delivery Man Problem, Traveling Salesman Problem, Time
windows, Polyhedral analysis, Mixed integer linear programming.

1. Introduction

The Delivery Man Problem with Time Windows (DMPTW) is a variant
of the Traveling Salesman Problem with Time Windows (TSPTW) defined
as follows. Let G = (N ∪ {0}, A) be a complete directed and asymmetric
graph, where N = {1, . . . , n} is a set of delivery nodes and 0 is the depot.
A travel time cij is associated with each arc (i, j) ∈ A. Time windows are
imposed on the beginning of service at the nodes of G: earliest and latest
times are described by parameters ei and li for nodes i ∈ N ∪{0}. If node i is
reached before ei, waiting occurs before service begins at this node. We also
define the travel duration of node i as the difference between the beginning

Preprint submitted to Discrete Optimization September 2, 2009

of service at node i and the beginning of service at the depot. The DMPTW
consists in determining a Hamiltonian path on G, starting at the depot node
0, so as to minimize the sum of travel durations over all nodes i ∈ N while
respecting time windows. The cumulative objective function of the DMPTW
is well suited to real applications involving passengers or perishable goods
as, for instance, school bus routing and scheduling, the transportation of
disabled people, and even some postal deliveries. Further, note that the time
needed to go back to the depot is not included in the objective function.
This means that we only care about the travel durations of the passengers or
perishable goods. Similar problems, i.e., without a return to the depot, are
referred to as ‘open vehicle routing problems’ (see for instance Li et al. [20],
Letchford et al. [19] or Repoussis et al. [29]).

The literature concerning the DMPTW is very limited. The Delivery Man
Problem (DMP), i.e., a DMPTW without time windows, was introduced by
Lucena [21] who proposed an integer nonlinear model for the problem. The
author derived lower bounds by Lagrangian relaxation and solved instances
with up to 30 nodes using an enumerative algorithm. Fischetti et al. [11], van
Eijl [32] and Méndez-Dı́az et al. [23] presented several mixed integer linear
programming formulations and valid inequalities for the DMP, and solved
instances having between 15 and 60 nodes. The Méndez-Dı́az et al. formula-
tion with precedence variables outperforms all others in terms of relaxation
quality and provides good results on instances involving up to 40 nodes.
However, the DMP does not include time windows and the corresponding
formulations cannot be adapted to the DMPTW.

The TSPTW has been more extensively studied. Baker [4] proposed a
non-differentiable and non-convex model and solved instances with up to 50
nodes by branch-and-bound, using a longest path algorithm to obtain lower
bounds. Langevin et al. [18] presented a mixed integer linear formulation
based on a two-commodity network flow and solved instances with up to 60
nodes. However, their formulation is not well suited to include a cumula-
tive objective function. Ascheuer et al. [2] developed valid inequalities for
the TSPTW and proved several polyhedral results. In a companion paper,
Ascheuer et al. [3] compared three mixed integer linear formulations for the
problem. They developed a branch-and-cut algorithm for their best model
which is capable of solving instances with up to 70 nodes. For the same
formulation, Mak and Ernst [22] proposed new cycle breaking and infeasi-
ble path inequalities. Preliminary results have shown that these tighten the
optimality gap but no further numerical results were presented. However, be-

2

cause the latter formulation makes use of infeasible path inequalities to model
time windows, it cannot handle a cumulative objective function either.

Since both DMP and TSPTW are NP-hard, several authors have focused
on heuristics. For the DMP, Lucena [21] and Bianco et al. [6] have pro-
posed 2-exchange amd 3-exchange heuristics, respectively, the initial tour
being constructed by an insertion procedure. They solved instances with up
to 35 nodes. A 3-exchange heuristic, coupled with a greedy initialization
procedure, was also considered by Fischetti et al. [11]. The authors solved
instances with up to 60 nodes. In what concerns the TSPTW, Gendreau et
al. [14] proposed an adaptation of a near-optimal TSP heuristic, and obtained
good quality solutions for instances with up to 100 nodes. Wolfler Calvo [33]
developed a heuristic in which a related assignment problem is first solved
to minimize infeasibility with respect to time windows. The corresponding
solution is then reduced to a single tour and improved by a local search
procedure. He solved instances with up to 200 nodes, and obtained better
results than Gendreau et al. Note that other techniques have also been used
to solve both DMP and TSPTW. Bianco et al. [6] solved instances of the
DMP with up to 60 nodes with dynamic programming. Dumas et al. [10]
and Bianco et al. [7] solved instances of the TSPTW with between 120 and
200 nodes again using dynamic programming, while Pesant et al. [25] and
Focacci et al. [12] combined constraint-programming and exact optimization
methods, and solved instances with up to 40 nodes.

The aim of this paper is to analyse and solve the DMPTW. We present
mixed integer linear formulations for the problem, together with exact and
heuristic algorithms. We also perform a polyhedral analysis of a special case.
If all time windows are closed (i.e., earliest and latest times are given for all
locations), finding a feasible solution is NP-hard (Savelsbergh [30]). Then
the dimension of the convex hull of feasible solutions cannot be determined,
and no further polyhedral results can be derived. However, this is not the
case if a closed time window is imposed only at the depot and all other nodes
have an open time window, as in Ascheuer et al. [2]. We perform a separate
analysis of this particular case.

The remainder of this paper is organized as follows. Two formulations of
the DMPTW are presented in Sections 2 and 3. The first one is a classical
model involving arc flow variables, while the second is a sequential assignment
model that explicitly considers the position of nodes in the Hamiltonian path.
Valid inequalities and polyhedral results are developed for the new sequen-
tial assignment formulation. Exact and heuristic algorithms are proposed in

3

Section 4. Finally, computational results are presented in Section 5, followed
by conclusions in Section 6.

2. Classical arc flow formulation

According to the Öncan et al. survey [24] in which several Asymmetric
Traveling Salesman Problem (ATSP) formulations are compared, the best
models are those that include precedence variables in addition to standard
arc flow variables. We adapt such a formulation presented by Gouveia and
Pires [16]. Let xij : i, j ∈ N ∪ {0}(i 6= j) be arc flow variables, while
vij : i, j ∈ N(i 6= j) and fkij : i, k ∈ N, j ∈ N ∪ {0}(i 6= j), represent
precedence variables:

vij =

{
1 if node i precedes node j in the Hamiltonian path,

0 otherwise
(1)

fkij =

{
1 if arc (i, j) appears after node k in the Hamiltonian path,

0 otherwise.
(2)

Finally, in order to deal with the cumulative objective function, variables
ti : i ∈ N ∪{0} are introduced to represent the times at which service begins
at the nodes.

4

With this notation, the DMPTW can be modelled as follows:

(AF-DMP) minimize
n∑
i=1

(ti − t0) (3)

subject to:

ti + cij ≤ tj +Mij(1− xij) i ∈ N ∪ {0}, j ∈ N(i 6= j) (4)

t0 ≤ tj j ∈ N (5)

ej ≤ tj ≤ lj j ∈ N (6)

e0 ≤ t0 ≤ l0 (7)∑
i∈N∪{0}

xij = 1 j ∈ N ∪ {0} (8)

∑
j∈N∪{0}

xij = 1 i ∈ N ∪ {0} (9)

∑
i∈N∪{0}

fkji −
∑
i∈N

fkij = 0 j, k ∈ N(j 6= k) (10)

∑
i∈N∪{0}

f jji = 1 j ∈ N (11)

fkij ≤ xij i, j, k ∈ N(i 6= j) (12)∑
j∈N∪{0}

fkij = vki i, k ∈ N(i 6= k) (13)

∑
p,q∈S

xpq + vki − vkj ≤ |S| − 1 i, j, k ∈ N(i 6= j 6= k)

S ⊂ N, |S| ≥ 2 : i, j ∈ S, k 6∈ S (14)

fkij ≥ 0 i, j, k ∈ N(i 6= j) (15)

xij ∈ {0, 1} i, j ∈ N ∪ {0}(i 6= j), (16)

where Mij : i ∈ N ∪ {0}, j ∈ N are sufficiently large constants.
Constraints (4) and (5) are the schedule compatibility inequalities: they

state that if an arc (i, j) is used, then the service time at node j is at least
equal to the service time at node i plus the travel time from i to j. They also
ensure that node 0 is visited before any node of N . Note that constraints
(4) also eliminate subtours. Constraints (6) and (7) are the time windows

5

inequalities for nodes in N ∪ {0}. Constraints (8) and (9) are arc flow in-
equalities. Constraints (10) and (11) are precedence flow inequalities which
ensure the flow conservation for variables f . Constraints (12) and (13) link
the variables x, f and v. Finally, constraints (14) are the generalized subpath
elimination inequalities, which prevent subpaths in G and link those with the
precedence variables v. Indeed, if node k precedes node i but not node j,
there cannot be a path between nodes i and j and

∑
p,q∈S xpq ≤ |S| − 2.

Otherwise if node k precedes both i and j, or if nodes i and j precedes node
k, then

∑
p,q∈S xpq ≤ |S| − 1.

Unfortunately, the schedule compatibility inequalities (4) involve “big-M”
constants. As a consequence, a polyhedral study of model (AF-DMP) can-
not be performed. Indeed, these constraints, which constitute an important
part of the polyhedral structure of the problem, would not define facets of
the convex hull of feasible solutions of the model. Further, although the for-
mulation (AF-DMP) is intuitive, it has been shown (see, e.g., Méndez-Dı́az
et al. [23] or Ascheuer et al. [3]) that adding time variables to an ATSP
formulation is computationally expensive. For these reasons, an alternative
more tractable model is presented in the next section.

3. An alternative sequential assignment formulation

We now propose a new formulation for the DMPTW, which explicitly
describes the node positions in the Hamiltonian path. Such formulations
have been considered in Picard and Queyranne [26], Fox et al. [13] and
Bigras et al. [8] for the Time-Dependent TSP, and also in Queyranne and
Schulz [27] or Keha et al. [17] for Single Machine Scheduling Problems.

Let σ0 be the service time at node 0, and let σt : t = 1, . . . , n be the
service time at the tth node of N . We introduce position variables yjt : j ∈
N, t = 1, . . . , n and transition variables wtij : i, j ∈ N(i 6= j), t = 2, . . . , n,
where

yjt =

{
1 if node j is the tth node of N in the Hamiltonian path,

0 otherwise,
(17)

wtij =

1 if nodes i and j are respectively the (t− 1)st and tth nodes of N

in the Hamiltonian path,

0 otherwise.

(18)

6

With these variables, the DMPTW can be modelled as the following mixed
integer linear programming model:

(S-DMP) minimize
n∑
t=1

(σt − σ0) (19)

subject to:

σ1 − σ0 ≥
∑

i,j∈N :i 6=j

c0jw
2
ji (20)

σt − σt−1 ≥
∑

i,j∈N :i 6=j

cijw
t
ij t = 2, . . . , n (21)

e0 ≤ σ0 ≤ l0 (22)

σ1 ≥
∑

i,j∈N :i 6=j

ejw
2
ji (23)

σ1 ≤
∑

i,j∈N :i 6=j

ljw
2
ji (24)

σt ≥
∑

i,j∈N :i 6=j

ejw
t
ij t = 2, . . . , n (25)

σt ≤
∑

i,j∈N :i 6=j

ljw
t
ij t = 2, . . . , n (26)∑

j∈N

yjt = 1 t = 1, . . . , n (27)

n∑
t=2

yjt = 1 j ∈ N (28)∑
i∈N

wtij = yjt j ∈ N, t = 2, . . . , n (29)∑
i∈N

wtji = yj,t−1 j ∈ N, t = 2, . . . , n (30)

yjt ∈ {0, 1} j ∈ N, t = 1, . . . , n (31)

wtij ≥ 0 i, j ∈ N(i 6= j), t = 2, . . . , n. (32)

Constraints (20) and (21) are the schedule compatibility inequalities.
Constraints (22) to (26) are the time windows inequalities. Constraints (27)
and (28) are the flow inequalities: (27) impose that a node is visited in each

7

position t = 1, . . . , n, whereas (28) ensure that each node is visited once.
Finally, constraints (29) and (30) link the transition and position variables
wtij and yjt.

Note that, thanks to the introduction of the binary position variables yjt,
the transition variables wtij can be declared as continuous as one can check
that wtij = yi,t−1yjt. Alternatively, the problem could be expressed in terms
of the variables σt and wtij only, which would increase the number of binary
variables from O(n2) to O(n3). However, preliminary tests have shown that
the previous (S-DMP) provides the best computational performance.

3.1. Polyhedral study

We now perform a polyhedral study of the particular case arising when
a closed time window is imposed only at the depot and all other nodes have
an open time window. More specifically, we show that, in this particular
case, most constraints of model (S-DMP) define facets of the convex hull of
feasible solutions.

Let PE = {(σ,w) : (20)− (23), (25), (27)− (32)} denote the convex hull of
feasible solutions for model (S-DMP) in the particular case described above.
To disregard irrelevant cases, it is assumed that e0 < l0 and that the time
windows have been tightened so that ej = max{ej, e0 + c0j} for all j ∈ N .
Let us also define a “path-w matrix” as an incidence matrix in which each
row corresponds to a Hamiltonian path and each column corresponds to a
variable wtij : i, j ∈ N(i 6= j), t = 2, . . . , n. We introduce the following
lemma, the proof of which can be found in the Appendix.

Lemma 1 The rank of the path-w matrix is n3 − 3n2 + 2n.

From this lemma, we can deduce the dimension of PE .

Proposition 1 The dimension of PE is n3 − 3n2 + 3n.

Proof Model (S-DMP) contains n + 1 + n2 + n(n − 1)2 variables, whereas
the number of equality constraints is 2n(n−1) + 2n. However, n−1 of these
constraints can be obtained by linear combinations of others. For instance,
one has

∑
j∈N yjn = 1 =

∑
i,j∈N :i 6=j w

n
ij =

∑
i∈N yi,n−1 = . . . =

∑
i∈N yi1. As a

consequence, dim(PE) ≤ (n+1+n2 +n(n−1)2)−(2n(n−1)+2n−(n−1)) ≤
n3 − 3n2 + 3n.

One can also prove that there exist n3 − 3n2 + 3n + 1 affinely indepen-
dent points in PE . In the following, the points of PE will be described by

8

their corresponding Hamiltonian path, for instance the path (0, 1, 2, . . . , n),
together with an assignment of variables σt (t = 0, . . . , n).

First, the Hamiltonian path (0, 1, 2, . . . , n) with the assignments

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}, t = 1, . . . , n (33)

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}, t = 1, . . . , n− 1 ;

σn = max{en, σn−1 + c(n−1)n}+ ε (34)

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}, t = 1, . . . , n− 2 ;

σt = max{et, σt−1 + c(t−1)t}+ ε, t = n− 1, n (35)

. . .

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}+ ε, t = 1, . . . , n (36)

σ0 = e0 + ε ; σt = max{et, σt−1 + c(t−1)t}+ ε, t = 1, . . . , n (37)

yield n+ 2 affinely independent points of PE .
We also know by Lemma 1 that the rank of the path-w matrix is n3−3n2+

2n. Further, because the equality wtij = yi,t−1yjt holds for all i, j ∈ N(i 6= j)
and t = 2, . . . , n, there exists a bijection between the assignment of vari-
ables wtij and yjt. If (0 = π(0), π(1), π(2), . . . , π(n)) is a Hamiltonian path
in G, the corresponding variables σt : t = 0, . . . , n can be set to σ0 = e0

and σt = max{eπ(t), σt−1 + cπ(t−1)π(t)} for all t = 1, . . . , n. Hence each row of
the path-w matrix represents a feasible solution of (S-DMP), among which
n3−3n2 + 2n are affinely independent. Because the path (0, 1, 2, . . . , n) used
in the first part of the proof is also a row of the path-w matrix, this means
that PE contains (n+ 2) + (n3 − 3n2 + 2n)− 1 = n3 − 3n2 + 3n+ 1 affinely
independent points. The result follows. �

We now prove that most constraints, or strengthened constraints, of
model (S-DMP) define facets of PE . We first present a strengthened ver-
sion of inequality (20), which defines a facet of PE under a realistic condition
on the time windows.

Proposition 2 The inequality

σ1 − σ0 ≥
∑

i,j∈N :i 6=j,
l0+c0j≥ej

c0jw
2
ji +

∑
i,j∈N :i 6=j,
l0+c0j<ej

(ej − l0)w2
ji (38)

is valid for (S-DMP). Further, it defines a facet of PE if and only if there
exists k̃ ∈ N such that l0 + c0k̃ > ek̃.

9

Proof To prove that the inequality is valid, assume that w2
ji = 1 for some

i, j ∈ N . If l0 + c0j ≥ ej, inequality (38) becomes σ1 − σ0 ≥ c0j, which is
valid by (20). Otherwise, i.e., if l0 + c0j < ej, inequality (38) yields σ1 −
σ0 ≥ ej − l0, which is valid by (22) and (23). Now consider a path (0 =
π(0), k̃ = π(1), π(2), . . . , π(n)). Since l0 + c0k̃ > ek̃, the following assignments
are feasible for the variables σ:

σ0 = l0 ; σ1 = l0 + c0k̃ ; σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}, t = 2, . . . , n
(39)

σ0 = l0 ; σ1 = l0 + c0k̃ ; σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}, t = 2, . . . , n− 1 ;

σn = max{eπ(n), σπ(n)−1 + c(π(n)−1)π(n)}+ ε (40)

σ0 = l0 ; σ1 = l0 + c0k̃ ; σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}, t = 2, . . . , n− 2 ;

σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}+ ε, t = n− 1, n (41)

. . .

σ0 = l0 ; σ1 = l0 + c0k̃ ; σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}+ ε, t = 2, . . . , n
(42)

σ0 = l0 − ε ; σ1 = l0 + c0k̃ − ε ;

σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}, t = 2, . . . , n. (43)

This yields n + 1 affinely independent points of PE . Furthermore, the rank
of the path-w incidence matrix is n3 − 3n2 + 2n by Lemma 1. For any path
(0 = π(0), π(1), π(2), . . . , π(n)) such that l0 +c0π(1) ≥ eπ(1) (resp. l0 +c0π(1) <
eπ(1)), the corresponding variables σ can be set to σ0 = l0, σ1 = l0 + c0π(1)

(resp. σ0 = l0, σ1 = eπ(1)) and σt = max{eπ(t), σt−1 + cπ(t−1)π(t)} for all
t = 2, . . . , n.

Finally, assume that there does not exist any k ∈ N such that l0+c0k > ek.
Then all points of PE satisfying (38) at equality also lie on the hyperplane
σ0 = l0 by (22). The result follows. �

Corollary 1 Under the assumption that l0 + c0j ≥ ej for all j ∈ N and
provided there exists k̃ ∈ N such that l0 + c0k̃ > ek̃, constraint (20) of (S-
DMP) defines a facet of PE .

One can also prove that the schedule compatibility inequalities (21) and
the time window inequalities (22) define facets of PE .

10

Proposition 3 Constraints (21) of (S-DMP) define facets of PE .

Proof Given t̃ ∈ {2, . . . , n}, we prove that σt̃ − σt̃−1 ≥
∑

i,j∈N :i 6=j cijw
t̃
ij is

facet defining for PE . First, the Hamiltonian path (0, 1, 2, . . . , n) with the
following assignments for variables σ:

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}, t = 1, . . . , t̃− 2, t̃+ 1, . . . , n ;

σt̃−1 = max{et̃−1, σt̃−2 + c(t̃−2)(t̃−1), et̃ − c(t̃−1)t̃} ; σt̃ = σt̃−1 + c(t̃−1)t̃ (44)

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}, t = 1, . . . , t̃− 2, t̃+ 1, . . . , n− 1 ;

σt̃−1 = max{et̃−1, σt̃−2 + c(t̃−2)(t̃−1), et̃ − c(t̃−1)t̃} ; σt̃ = σt̃−1 + c(t̃−1)t̃ ;

σn = max{en, σn−1 + c(n−1)n}+ ε (45)

. . .

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}, t = 1, . . . , t̃− 2 ;

σt̃−1 = max{et̃−1, σt̃−2 + c(t̃−2)(t̃−1), et̃ − c(t̃−1)t̃} ; σt̃ = σt̃−1 + c(t̃−1)t̃ ;

σt = max{et, σt−1 + c(t−1)t}+ ε, t = t̃+ 1, . . . , n (46)

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}, t = 1, . . . , t̃− 2 ;

σt̃−1 = max{et̃−1, σt̃−2 + c(t̃−2)(t̃−1), et̃ − c(t̃−1)t̃}+ ε ; σt̃ = σt̃−1 + c(t̃−1)t̃ ;

σt = max{et, σt−1 + c(t−1)t}+ ε, t = t̃+ 1, . . . , n (47)

. . .

σ0 = e0 + ε ; σt = max{et, σt−1 + c(t−1)t}+ ε, t = 1, . . . , t̃− 2, t̃+ 1, . . . , n ;

σt̃−1 = max{et̃−1, σt̃−2 + c(t̃−2)(t̃−1), et̃ − c(t̃−1)t̃}+ ε ; σt̃ = σt̃−1 + c(t̃−1)t̃ (48)

yield n+ 1 affinely independent points of PE .
Next, the rank of the path-w incidence matrix is n3−3n2 +2n by Lemma

1. For any path (0 = π(0), π(1), π(2), . . . , π(n)), the variables σ can be set to
σ0 = e0, σt = max{eπ(t), σt−1 + cπ(t−1)π(t)} for all t = 1, . . . , t̃− 2, t̃+ 1, . . . , n,
σt̃−1 = max{eπ(t̃−1), σt̃−2 + cπ(t̃−2)π(t̃−1), eπ(t̃) − cπ(t̃−1)π(t̃)} and σt̃ = σt̃−1 +
cπ(t̃−1)π(t̃). �

Proposition 4 Constraints (22) of (S-DMP) define facets of PE .

Proof We show that σ0 ≥ e0 is facet defining for PE . The proof that σ0 ≤ l0
defines a facet of PE is obtained by replacing e0 with l0.

First consider the Hamiltonian path (0, 1, 2, . . . , n) together with the cor-

11

responding variables σ:

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}, t = 1, . . . , n (49)

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}, t = 1, . . . , n− 1 ;

σn = max{en, σn−1 + c(n−1)n}+ ε (50)

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}, t = 1, . . . , n− 2 ;

σt = max{et, σt−1 + c(t−1)t}+ ε, t = n− 1, n (51)

. . .

σ0 = e0 ; σt = max{et, σt−1 + c(t−1)t}+ ε, t = 1, . . . , n, (52)

which yield n+ 1 affinely independent points of PE .
Next, the rank of the path-w incidence matrix is still n3 − 3n2 + 2n, and

the variables σ can be set to σ0 = e0 and σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}
for all t = 1, . . . , n. The result follows. �

The time window inequality (23) also defines a facet of PE under some
realistic condition on the parameters ei (i ∈ N ∪ {0}).

Proposition 5 Constraints (23) of (S-DMP) is facet defining for PE if and
only if there exists k̃ ∈ N such that e0 + c0k̃ < ek̃.

Proof Consider a path (0 = π(0), k̃ = π(1), π(2), . . . , π(n)) with the follow-
ing assignments for variables σ:

σ0 = e0 ; σ1 = ek̃ ; σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}, t = 1, . . . , n (53)

σ0 = e0 ; σ1 = ek̃ ; σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}, t = 1, . . . , n− 1 ;

σn = max{eπ(n), σn−1 + cπ(n−1)π(n)}+ ε (54)

σ0 = e0 ; σ1 = ek̃ ; σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}, t = 1, . . . , n− 2 ;

σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}+ ε, t = n− 1, n (55)

. . .

σ0 = e0 ; σ1 = ek̃ ; σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}+ ε, t = 2, . . . , n (56)

σ0 = e0 + ε ; σ1 = ek̃ ; σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}+ ε, t = 2, . . . , n.
(57)

One obtains n + 1 affinely independent points of PE . Next, the rank of
the path-w incidence matrix is n3 − 3n2 + 2n by Lemma 1. For any path
(0 = π(0), π(1), π(2), . . . , π(n)), the corresponding variables σ can be set

12

to σ0 = e0, σ1 = eπ(1) and σt = max{eπ(t), σt−1 + cπ(t−1)π(t)} for all t =
2, . . . , n (indeed, recall that the time windows have been tightened so that
ej = max{ej, e0 + c0j} for all j ∈ N).

To prove the result, assume by contradiction that e0 + c0k ≥ ek for all
k ∈ N . Then all points of PE that satisfy (23) at equality also lie on the
hyperplane σ0 = e0 by (20). �

Finally, the time window inequality involving the second node of N in the
Hamiltonian path can be strengthened. The resulting constraint also defines
a facet of PE .

Proposition 6 The inequality

σ2 ≥
∑

i,j∈N :i 6=j

max{ei, ej + cji}w2
ji (58)

defines a facet of PE if and only if there exist k̃1, k̃2 ∈ N such that ek̃1+ck̃1k̃2 <
ek̃2.

Proof First assume that ej + cji ≥ ei for all i, j ∈ N . Then any point of PE
satisfying (58) at equality also lies on the hyperplane σ1 =

∑
i,j∈N :i 6=j ejw

2
ji

by (21). Hence the condition stated in Proposition 6 is necessary, so that
(58) is facet defining for PE .

In order to prove that the assumption is also sufficient, consider a Hamil-
tonian path (0 = π(0), k̃1 = π(1), k̃2 = π(2), π(3), . . . , π(n)). The following

13

settings for variables σ yield n+ 1 affinely independent points of PE :

σ0 = e0 ; σ1 = ek̃1 ; σ2 = ek̃2 ;

σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}, t = 1, . . . , n (59)

σ0 = e0 ; σ1 = ek̃1 ; σ2 = ek̃2 ;

σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}, t = 1, . . . , n− 1 ;

σn = max{eπ(n), σn−1 + cπ(n−1)π(n)}+ ε (60)

. . .

σ0 = e0 ; σ1 = ek̃1 ; σ2 = ek̃2 ;

σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}+ ε, t = 3, . . . , n (61)

σ0 = e0 ; σ1 = ek̃1 + ε ; σ2 = ek̃2 ;

σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}+ ε, t = 3, . . . , n (62)

σ0 = e0 + ε ; σ1 = ek̃1 + ε ; σ2 = ek̃2 ;

σt = max{eπ(t), σt−1 + cπ(t−1)π(t)}+ ε, t = 3, . . . , n. (63)

Note that the condition stated in Proposition 6 ensures the feasibility of
the two last assignements for variables σ. Furthermore, for any path (0 =
π(0), π(1), π(2), . . . , π(n)), the corresponding variables σ can be set to σ0 =
e0, σ1 = eπ(1), σ2 = max{eπ(2), eπ(1) + cπ(1)π(2)} and σt = max{eπ(t), σt−1 +
cπ(t−1)π(t)} for all t = 3, . . . , n. As the rank of the path-w incidence matrix is
n3 − 3n2 + 2n as before, the result follows. �

Hence, only the time window inequalities involving the third to the nth

node of N in the Hamiltonian path do not define facets of PE . This means
that model (S-DMP) is strong, at least theoretically. In Section 5, the latest
model will be computationally compared with the classical model (AF-DMP).

4. Algorithms

In this section, we describe both an exact and a heuristic solution method
for the DMPTW.

4.1. Exact algorithm

Models (AF-DMP) and (S-DMP) can be implemented and solved exactly
using a general purpose branch-and-cut algorithm. The subtour elimination
constraints (14) in (AF-DMP) are separated in a classical way. Given a

14

current solution, we create a supporting graph G∗ = (N ∪ {0}, A∗), where
(i, j) ∈ A∗ has a capacity equal to the value x∗ij taken by xij. First, we
determine the number of connected components in the graph induced by the
arcs with strictly positive capacity. If there are more than one connected
component, the corresponding subtour elimination constraints are appended
to the model. Next, for all i, j, k ∈ N , we aggregate the nodes i, j into a
node ij, and we look for the minimum capacity cut between nodes ij and k.
If the corresponding subtour elimination constraint (14) is violated by the
current solution, it is appended to the model.

For the DMPTW with closed time windows at all nodes, the constants
Mij of model (AF-DMP) are set to Mij = li + cij − ej for all i ∈ N ∪{0} and
j ∈ N . If a closed time window is imposed only at the depot and all nodes
of N have an open time window, then we set the constants Mij as follows:

Mij = max
j∈N∪{0}

{ej}+
∑

k∈N :k 6=j

max
j∈N
{ckj} − cij i, j ∈ N (64)

M0j = max
j∈N∪{0}

{ej}+
∑

k∈N∪{0}:k 6=j

max
j∈N
{ckj} − c0j j ∈ N. (65)

Furthermore, using logical implications between the time windows [ei, li] :
i ∈ N and the travel times cij : i ∈ N ∪ {0}, j ∈ N , the time windows are
tightened as follows:

ej = max
{
ej, min

i∈N∪{0}:i 6=j
{ei + cij}

}
j ∈ N (66)

lj = min
{
lj,max{ej, max

i∈N∪{0}:i 6=j
{li + cij}}

}
j ∈ N (67)

l0 = min
{
l0, max

i∈N :i 6=j
{li − c0i}

}
. (68)

We also apply a preprocessing step on the nodes of N , setting xij = 0 in
model (AF-DMP) (resp. wtij = 0 for all t = 2, . . . , n in (S-DMP)) for all
i, j ∈ N such that ei + cij > lj.

Finally, a strengthened version of model (S-DMP) is considered. In the
latter, the facet defining inequalities (38) and (58) are appended to (S-DMP),

15

together with the following valid inequalities:

σ2 ≤
∑

i,j∈N :i 6=j

min
{
li,max{ei, lj + cji}

}
w2
ji (69)

σt ≥
∑

i,j∈N :i 6=j

max{ej, ei + cij}wtij t = 3, . . . , n (70)

σt ≤
∑

i,j∈N :i 6=j

min
{
lj,max{ej, li + cij}

}
wtij t = 3, . . . , n. (71)

The validity of these inequalities can be checked using logical implications
between the schedule compatibility and the time window constraints. Fur-
thermore, note that (69) and (71) are redundant when a closed time window
is imposed only at the depot.

4.2. Heuristic

We now describe a heuristic for the DMPTW. An insertion procedure is
first applied to construct an initial feasible solution of the problem. An ex-
change procedure is then used to perturb the current solution and to improve
the objective function value.

The insertion procedure works as follows. As in Wolfer Calvo [33], we
solve a related Assignment Problem (AP) while minimizing infeasibility of
time windows. Because tj ≤ lj for all j ∈ N and considering the cumulative
objective function of the DMPTW, the service times at nodes of N should
be as small as possible. For all i ∈ N ∪ {0}, j ∈ N such that xij = 1, one
also knows that

tj ≥ max{ti + cij, ej} ≥ max{ei + cij, ej} = ei + cij + w̄ij, (72)

where w̄ij = max{ej − ei − cij, 0}. Hence the following AP is solved:

(AP) minimize
∑

i∈N∪{0},j∈N :i 6=j

(cij + w̄ij)xij (73)

subject to: ∑
i∈N∪{0}

xij = 1 j ∈ N ∪ {0} (74)

∑
j∈N∪{0}

xij = 1 i ∈ N ∪ {0}, (75)

xij ∈ {0, 1} i, j ∈ N ∪ {0}. (76)

16

The AP solution yields a main path (0, . . . , k) containing the depot 0, as
well as several subpaths not containing it. The feasibility of the main path
is then checked by computing the earliest times at nodes:

t0 = e0 (77)

tj = max{ej, tj−1 + c(j−1)j} j ∈ {1, . . . , k}. (78)

If a node j ∈ N is infeasible with respect to its time window [ej, lj], i.e., if
tj > lj, it is removed from the main path.

Next, the subpaths are selected one at a time for insertion in the main
path. At each iteration, the selected subpath S is the one corresponding to
the smallest time window width li − ei : i ∈ N , among those that have not
been already selected. The heuristic attempts to insert S between every pair
of nodes of the main path, in the order in which they appear in the main
path. If there is no feasible insertion, one tries to insert S in the reverse order.
If there still is no feasible insertion, one tries to insert S by decomposing the
path into blocks of single nodes, i.e., the first node of S is between nodes i
and i+ 1 of the main path (i ∈ {0, . . . , k}), the second node of S is between
nodes i + 1 and i + 2 of the main path, etc. This process stops either as
soon as a feasible insertion of S has been found, or when all the previous
insertions have been considered. If an insertion is feasible, it is implemented
and another subpath is selected for insertion.

When all subpaths have been considered for insertion into the main path,
the related AP is solved on the nodes that do not belong to the main path.
Again, the subpaths are selected one at a time for insertion in the main
path. When no more feasible insertion of the subpaths exist, the remaining
nodes are sorted by increasing width of time windows. The nodes are then
iteratively selected for insertion between any pair of nodes of the main path,
in the order in which they appear in the main path. Whenever a feasible
insertion is found, it is implemented and the next node is selected. At the
end of this process, if there are still nodes that cannot be inserted in the
main path, a backtracking process is applied. A node is first chosen randomly
and removed from the main path. Then all remaining nodes are iteratively
selected for insertion in the main path. If there is still no feasible insertion,
a second node is randomly chosen and removed from the main path. The
process ends as soon as a feasible insertion has been identified.

This process yields a feasible Hamiltonian path P = (0, 1, . . . , n). The
times at nodes of N are fully determined by the service time at the depot.

17

Hence, in order to minimize the objective function, one should start from the
depot as late as possible. As in Savelsbergh [31], we define the forward time
slack at node i for a sequence (i, . . . , j) as the largest possible delay of node
i such that the corresponding sequence remains feasible, i.e.,

F
(i,...,j)
i = min

i≤k≤j

{
lk − (ti +

∑
i≤p<k

cp,p+1)

}
. (79)

The latest service time at the depot such that P remains feasible is given by
F

(0,1,...,n)
0 , which can be determined through the recursion formula

F
(0,...,i,i+1)
0 = min

{
F

(0,...,i)
0 , li+1 − ti+1 +

∑
0<p≤t+1

Wp

}
. (80)

Given an initial feasible solution of the problem, an exchange procedure
is used to improve the current value of the objective function. We consider
2-opt and Or-opt exchanges of nodes. A 2-opt exchange consists in replacing
two arcs (i, i+ 1) and (j, j+ 1) of the current path by (i, j) and (i+ 1, j+ 1),
this also involving that the sequence (i+1, . . . , j) is reversed in the new path.
An Or-opt exchange consists in moving a sequence (i1, . . . , i2) of the current
path between a pair of nodes (j, j + 1). Such a sequence (usually of length
1, 2 or 3) can be moved forward of backward in the path, depending of the
pair of nodes (j, j + 1).

At each iteration, a lexicographic search is used to select the best feasible
exchange of nodes. This implies that both a feasibility test and an optimality
test are performed. For each possible exchange, the feasibility test consists
in computing the forward time slack F0 at node 0 for the new path, using
the procedure described in [31]. One can then conclude that the new path
is feasible if F0 ≥ −t0 + e0, where t0 is the current time at node 0. If the
new path is feasible, an optimality test is used to compute the objective
function value with the new path. The time at node 0 can be set to t0 :=
t0 + min{F0,

∑
0<p<nWp}, where the sum of waiting times on the new path

is again calculated as in [31]. The objective function value of the new path
can then be computed recursively.

Two different exchange procedures, with or without a tabu list, were
developed and compared. In the procedure without a tabu list, the best
feasible exchange is executed at each iteration if and only if it yields a better
objective function value. In the procedure with the tabu list, non-improving
moves are allowed in order to escape from local optima. However, the best

18

known solution is always recorded. In order to avoid cycles, the last moves
are stored in a tabu list and the procedure is stopped after a given number
of iterations.

5. Computational results

In this section, both the classical model (AF-DMP) and the alternative
model (S-DMP) are tested on numerical instances. A strengthened version
of model (S-DMP) is also tested. In the latter, inequalities (38) to (71) are
appended to the formulation (S-DMP). The models have been implemented
in C++ and solved using ILOG CPLEX 10.1 and the Concert Library. All
tests were run on an AMD Opteron 285 computer (2.6 GHz) running Linux.

For the particular case of the DMPTW in which a closed time is imposed
only at the depot and all other nodes have open time windows, two sets
of instances are considered. The first set comes from TSPLIB [28], but
the instances are adapted to fit our problem. Earliest times at nodes are
randomly generated in [0, T], the latest time at node 0 lying in [e0, T], where
T is the average length of a Hamiltonian path starting at node 0 and going
through all nodes of N . The number of nodes in the data is also reduced to
generate 13 instances of each size, namely 12, 15, 20 and 25 nodes in addition
to the depot node 0. The second set of instances were derived by Ascheuer
[1] from a stacker crane application, and involve from 10 to 67 nodes plus
the depot. These are used to compare the models (AF-DMP) and (S-DMP)
for the particular case, but also for the DMPTW with closed time windows
at all nodes.

The results obtained on the first set of instances are presented in Table
1. Columns ‘Solved’ provide the number of instances solved to optimality
within a maximum CPU time of one hour. For these instances, columns
‘Gap’, ‘CPU’ and ‘Nodes’ provide the optimality gaps, the CPU times (in
seconds) and the number of nodes in the branch-and-cut tree. The optimality

gap is defined as 100×Zlp−Zopt

Zopt
, where Zlp is the LP relaxation optimal solution

value and Zopt is the integer optimal solution value.
One can observe that model (S-DMP), especially when it is strengthened

with inequalities (38), (58) and (70), enables the solution of far more in-
stances than model (AF-DMP). However, the optimality gaps and number
of nodes for the instances of size 12 and 15 solved to optimality, are larger
for model (S-DMP) than for model (AF-DMP).

19

(AF-DMP) (S-DMP) Strengthened (S-DMP)
Solved Gap CPU Nodes Solved Gap CPU Nodes Solved Gap CPU Nodes

12 3 3.17 1 490 13 20.58 27 6613 13 17.7 7 1213
15 3 3.11 21 7041 11 14.61 240 16459 13 16.41 86 6725
20 1 3.62 1428 172305 9 15.68 256 8613 9 15.22 413 13116
25 0 * * * 6 12 448 7181 6 11 497 8102

Table 1: The DMPTW with a closed time window only at the depot, on TSPLIB instances.

Table 2 provides the results for the second set of instances. An asterisk
indicates that the instance cannot be solved within one hour. From these
results, one concludes that the new model (S-DMP) can only be used when
combined with the strengthened inequalities (38), (58) and (70). Further,
for half of the instances solved, the optimality gap obtained with the latter
model is reduced to zero. However, model (AF-DMP) is able to solve one
more instance than the strengthened model (S-DMP).

The results for the DMPTW with closed time windows at all nodes are
presented in Table 3, and are quite similar to those obtained with the par-
ticular case. As before, one concludes that only the strengthened version of
model (S-DMP) can be used. For the latter model, the optimality gap is
also zero for half the instances solved to optimality. However, model (AF-
DMP) allows solving one more instance (among 20 instances in total) than
the strengthened model (S-DMP).

Numerical experiments with the heuristic were also conducted on two
sets of instances. First, the Ascheuer instances [1] from the stacker crane
application were used to compare the solutions obtained by the heuristic
with the optimal solutions determined by exact optimization (see Section
4). In Table 4, optimal solutions are provided in column ‘Obj’, while ‘Opt’
and ‘CPU’ denote the best solutions and the CPU times (in seconds) found
by the heuristic. Note that instances ‘rbg41’ and ‘rbg42’ were not solved to
optimality, thus the best integer solutions are provided in parentheses.

The size of the tabu list and the number of iterations after which the
exchange procedure is stopped were determined after preliminary tests. The
exchange procedure is stopped after 200 iterations, while the size of the tabu
list ranges from 20 to 50. Table 4 shows that optimal solutions are found by
the tabu search heuristic for almost all instances. One can also observe that

20

Instance (AF-DMP) (S-DMP) Strengthened (S-DMP)
Gap CPU Nodes Gap CPU Nodes Gap CPU Nodes

rbg010a 1.83 0.2 105 17.76 3.49 1685 9.01 0.31 49
rbg016a 1.43 20.24 6329 * * * 6.86 167.03 18644
rbg016b 4.31 109.63 37445 * * * * * *
rbg017a 0.03 2.24 173 0.03 358.77 7859 0 0 0
rbg019a 0.46 4.5 284 * * * 0.62 4.18 109
rbg019b * * * * * * * * *
rbg021.3 0.04 4.29 184 0.04 2687.14 21412 0 0.01 0
rbg027a 0.06 33.18 709 * * * 0 0.04 0
rbg031a * * * * * * * * *
rbg033a * * * * * * * * *
rbg034a 0.47 289.51 4681 * * * 1.45 562.43 870
rbg035a * * * * * * * * *
rbg038a 0.1 224.38 1779 * * * 0.44 73.19 91
rbg040a 0.04 260.31 1576 * * * 0 0.14 0
rbg041a * * * * * * * * *
rbg042a * * * * * * * * *
rbg048a 0.01 1215.16 5911 * * * 0 0.25 0
rbg049a 0.02 1844.5 9751 * * * 0 21.07 0
rbg055a * * * * * * * * *
rbg067a * * * * * * * * *

Table 2: The DMPTW with a closed time window only at the depot, on the Ascheuer
instances.

the use of a tabu mechanism yields slight improvements in terms of solution
values.

Several benchmark data sets from the litterature, namely Gendreau et
al. [14] and Dumas et al. [10] instances, were used. These range between
20 and 200 nodes (|N |), with time window widths (W) between 120 and
200 time units (the original time windows were extended by 100 time units).
The corresponding results are presented in Table 5. The best solutions and
CPU times are given in columns ‘Opt’ and ‘CPU’, while columns ‘∆(%)’
provide the improvement (in terms of solution value) with respect to the
best solutions found by the heuristic without the tabu list.

These results enable us to draw two main conclusions. First, the use of
a tabu list yields much better solutions that the simple descent heuristic,
but the CPU times increase significantly. Next, a tabu list of size 30 yields
the best solutions without a substantial increase in CPU time, as the larger

21

Instance (AF-DMP) (S-DMP) Strengthened (S-DMP)
Gap CPU Nodes Gap CPU Nodes Gap CPU Nodes

rbg010a 1.99 0.15 78 17.89 1.03 203 9.09 1.04 24
rbg016a 1.65 3.73 998 9.06 50.45 3070 7.04 3.65 52
rbg016b 8.93 29.12 7522 * * * 74.44 1647.81 130511
rbg017a 0.03 1.7 92 0.03 1182.49 20505 0 0.01 0
rbg019a 0.5 0.57 6 2.05 599.22 11301 0.64 7.34 109
rbg019b * * * * * * 22.72 598.81 25040
rbg021.3 0.05 2.42 104 * * * 0 0.01 0
rbg027a 0.07 22.63 373 * * * 0 0.05 0
rbg031a * * * * * * * * *
rbg033a * * * * * * * * *
rbg034a 0.51 60.77 537 * * * 1.47 973.11 1021
rbg035a 2.39 1001.08 17436 * * * * * *
rbg038a 0.1 67.3 408 * * * 0.45 213.22 58
rbg040a 0.04 44.34 123 * * * 0 4.25 0
rbg041a * * * * * * * * *
rbg042a * * * * * * * * *
rbg048a 0.01 571.33 1951 * * * 0 0.34 0
rbg049a 0.01 1180.67 6560 * * * 0 27.37 0
rbg055a 0.07 266.83 524 * * * * * *
rbg067a 0.02 431.45 295 * * * 0.25 1307.36 2

Table 3: The DMPTW with closed time windows at all nodes, on the Ascheuer instances.

instances are solved in less than 10 minutes.
Finally, note that we have also tried to solve the DMPTW by the exact

solution method while providing the solution of the heuristic as an initial
solution. However, this does not seem to reduce neither the CPU time nor
the number of nodes in the branch-and-bound tree.

6. Conclusions

We have studied a variant of the TSPTW with a cumulative objective
function, which minimizes the sum of travel durations between a depot and
several locations. Two mixed integer linear programming formulations were
proposed for the problem: a classical arc flow and a sequential assignment
model. We have also performed a polyhedral analysis of the second formu-
lation in the special case where a closed time window is imposed only at

22

Instance Without tabu Tabu list of 20 Tabu list of 30 Tabu list of 50
|N | Obj Opt CPU Opt CPU Opt CPU Opt CPU

rbg010a 6333 6333 0 6333 0 6333 0 6333 0
rbg016a 13705 13705 0 13705 0 13705 1 13705 0
rbg016b 5014 5580 0 5014 1 5014 0 5014 0
rbg017a 34973 34973 0 34973 0 34973 0 34973 1
rbg019a 18947 18947 0 18947 0 18947 1 18947 0
rbg019b 10517 10545 0 10545 1 10545 0 10545 1
rbg021.3 39699 39699 0 39699 0 39699 0 39699 0
rbg027a 67096 67096 0 67096 1 67096 2 67096 2
rbg031a 29413 29413 0 29413 2 29413 2 29413 3
rbg033a 36914 36914 0 36914 2 36914 2 36914 2
rbg034a 41754 41754 0 41754 3 41754 2 41754 3
rbg035a 37825 37825 0 37825 2 37825 3 37825 2
rbg038a 120752 120752 1 120752 4 120752 3 120752 4
rbg040a 118505 118505 0 118505 4 118505 5 118505 6
rbg041a (16507) 16532 0 16529 5 16529 4 16529 7
rbg042a (7603) 6584 1 6107 5 6107 6 5607 6
rbg048a 242002 242002 0 242002 6 242002 6 242002 6
rbg049a 350832 350832 1 350832 8 350832 7 350832 10
rbg055a 191702 191702 1 191702 9 191702 9 191702 12
rbg067a 391105 391105 1 391105 17 391105 17 391105 21

Table 4: Heuristic results on the Ascheuer instances.

the depot, while open time windows are used at all other locations. The
results have shown that most constraints are facet defining for the corre-
sponding convex hull of feasible solutions. Next, we have presented both
exact and heuristic algorithms for the problem. Using a general purpose
branch-and-cut solver, we were able to solve instances with up to 67 nodes
within reasonable computational time for both models. Whereas the first
model solves a few more instances than the second one, the latter yields
optimality gaps of zero for half of the instances solved to optimality. The
heuristic also performs well and provides good quality solutions, especially
when a tabu list is used.

Appendix: Proof of Lemma 1

Consider that variables wtij : i, j ∈ N, i 6= j, t = 2, . . . , n are sorted by
lexicographic order on (t, i, j). Furthermore, for all i, j ∈ N (i 6= j), let πi and

23

Instance Without tabu Tabu list of 20 Tabu list of 30 Tabu list of 50
|N | W Opt CPU Opt ∆(%) CPU Opt ∆(%) CPU Opt ∆(%) CPU

20 120 2674 0 2567 −3.99 0 2535 −5.19 0 2535 −5.19 1
20 140 1932 0 1908 −1.23 0 1908 −1.23 0 1908 −1.23 1
20 160 2190 0 2150 −1.82 0 2149 −1.86 0 2150 −1.82 1
20 180 2085 0 2046 −1.86 0 2035 −2.39 1 2037 −2.29 1
20 200 2349 0 2294 −2.33 0 2294 −2.33 1 2294 −2.33 1
40 120 7535 0 7509 −0.34 3 7509 −0.34 3 7496 −0.51 5
40 140 7258 0 7205 −0.72 3 7205 −0.72 3 7203 −0.75 4
40 160 6892 0 6659 −3.37 3 6657 −3.4 3 6657 −3.4 4
40 180 6966 0 6600 −5.24 3 6583 −5.49 4 6578 −5.56 5
40 200 6457 0 6408 −0.75 3 6408 −0.75 4 6408 −0.75 5
60 120 9917 1 9304 −6.17 13 9303 −6.18 15 9303 −6.18 20
60 140 9734 1 9131 −6.18 13 9131 −6.18 16 9131 −6.18 21
60 160 11454 1 11419 −0.3 10 11422 −0.27 12 11422 −0.27 17
60 180 10790 1 9796 −9.2 12 9713 −9.97 14 9689 −10.19 18
60 200 10925 1 10758 −1.52 11 10363 −5.13 13 10315 −5.57 17
80 120 12150 3 11175 −8.01 31 11122 −8.45 38 11156 −8.17 52
80 140 16101 2 14185 −11.89 27 14198 −11.81 33 14131 −12.23 43
80 160 9108 3 8614 −5.41 26 8623 −5.31 32 8614 −5.41 43
80 180 11625 3 11236 −3.34 33 11226 −3.42 41 11222 −3.46 56
80 200 8302 3 8295 −0.07 28 8295 −0.07 34 8272 −0.35 47

100 120 22269 6 19351 −13.09 62 19246 −13.56 73 19368 −13.02 94
100 140 23351 6 22087 −5.4 60 22078 −5.44 71 22078 −5.44 93
100 160 28970 4 27469 −5.17 39 27469 −5.17 46 27368 −5.52 58
150 120 28245 35 27816 −1.51 226 27816 −1.51 283 27192 −3.72 388
150 140 27768 37 27544 −0.8 225 27382 −1.38 285 27382 −1.38 389
150 160 21436 27 20752 −3.18 180 20752 −3.18 226 21123 −1.45 308
200 120 18010 44 17886 −0.68 214 17886 −0.68 266 17886 −0.68 356
200 140 35203 71 34522 −1.92 434 34410 −2.24 547 34391 −2.3 750

Table 5: Heuristic results from the Gendreau et al. and Dumas et al. instances.

πij denote permutations of the nodes in N \{i, n−1, n} and N \{i, j, n−1, n},
respectively. The notations πijS and πij

S̄
represent node permutations in the

complementary subsets S and S̄, where S ∪ S̄ = N \ {i, j, n − 1, n}. One
can check that the following combinations of rows of the path-w matrix are

24

affinely independent:

f 2,i,n = (0, i, n, n− 1, πi)− (0, n, i, n− 1, πi)

= w2
in − w2

ni + w3
n(n−1) − w3

i(n−1)

i ∈ N \ {n− 1, n} (81)

f 2,n−1,n = (0, n− 1, n, n− 2, πn−2)− (0, n, n− 1, n− 2, πn−2)

= w2
(n−1)n − w2

n(n−1) + w3
n(n−2) − w3

(n−1)(n−2) (82)

f t,i,j = (0, πijS , i, j, n, n− 1, πij
S̄

)− (0, πijS , i, n, j, n− 1, πij
S̄

)

= wtij − wtin + wt+1
jn − wt+1

nj + wt+2
n(n−1) − w

t+2
j(n−1)

t = 2, . . . n− 1, i, j ∈ N \ {n− 1, n} : i 6= j (83)

f t,i,n−1 = (0, π
i(n−2)
S , i, n− 1, n, n− 2, π

i(n−2)

S̄
)

− (0, π
i(n−2)
S , i, n, n− 1, n− 2, π

i(n−2)

S̄
)

= wti(n−1) − wtin + wt+1
(n−1)n − w

t+1
n(n−1) + wt+2

n(n−2) − w
t+2
(n−1)(n−2)

t = 2, . . . , n− 1, i ∈ N \ {n− 2, n− 1, n} (84)

f t,n−2,n−1 = (0, π
(n−2)(n−3)
S , n− 2, n− 1, n, n− 3, π

(n−2)(n−3)

S̄
)

− (0, π
(n−2)(n−3)
S , n− 2, n, n− 1, n− 3, π

(n−2)(n−3)

S̄
)

= wt(n−2)(n−1) − wt(n−2)n + wt+1
(n−1)n − w

t+1
n(n−1) + wt+2

n(n−3)

− wt+2
(n−1)(n−3)

t = 2, . . . , n− 1 (85)

f t,n−1,i = (0, π
i(n−2)
S , n− 1, i, n, n− 2, π

i(n−2)

S̄
)

− (0, π
i(n−2)
S , n− 1, n, i, n− 2, π

i(n−2)

S̄
)

= wt(n−1)i − wt(n−1)n + wt+1
in − wt+1

ni + wt+2
n(n−2) − w

t+2
i(n−2)

t = 2, . . . , n− 1, i ∈ N \ {n− 2, n− 1, n} (86)

f t,n−1,n−2 = (0, π
(n−2)(n−3)
S , n− 1, n− 2, n, n− 3, π

(n−2)(n−3)

S̄
)

− (0, π
(n−2)(n−3)
S , n− 1, n, n− 2, n− 3, π

(n−2)(n−3)

S̄
)

= wt(n−1)(n−2) − wt(n−1)n + wt+1
(n−2)n − w

t+1
n(n−2) + wt+2

n(n−3)

− wt+2
(n−2)(n−3)

t = 2, . . . , n− 1 (87)

25

f t,n,i = (0, π
i(n−2)
S , n, i, n− 1, n− 2, π

i(n−2)

S̄
)

− (0, π
i(n−2)
S , n, n− 1, i, n− 2, π

i(n−2)

S̄
)

= wtni − wtn(n−1) + wt+1
i(n−1) − w

t+1
(n−1)i + wt+2

(n−1)(n−2) − w
t+2
i(n−2)

t = 2, . . . , n− 1, i ∈ N \ {n− 2, n− 1, n} (88)

f t,n,n−2 = (0, π
(n−2)(n−3)
S , n, n− 2, n− 1, n− 3, π

(n−2)(n−3)

S̄
)

− (0, π
(n−2)(n−3)
S , n, n− 1, n− 2, n− 3, π

(n−2)(n−3)

S̄
)

= wtn(n−2) − wtn(n−1) + wt+1
(n−2)(n−1) − w

t+1
(n−1)(n−2) + wt+2

(n−1)(n−3)

− wt+2
(n−2)(n−3)

t = 2, . . . , n− 1 (89)

fn,i,j = (0, πij, n, n− 1, i, j)− (0, πij, n, i, j, n− 1)

= wn−2
n(n−1) − w

n−2
ni + wn−1

(n−1)i − w
n−1
ij + wnij − wnj(n−1)

i, j ∈ N \ {n− 1, n} : i 6= j (90)

fn,i,n−1 = (0, πi(n−2), n− 2, n, i, n− 1)− (0, πi(n−2), n− 2, n− 1, i, n)

= wn−2
(n−2)n − w

n−2
(n−2)(n−1) + wn−1

ni − wn−1
(n−1)i + wni(n−1) − wnin

i ∈ N \ {n− 2, n− 1, n} (91)

fn,n−2,n−1 = (0, π(n−3)(n−2), n− 3, n, n− 2, n− 1)

− (0, π(n−3)(n−2), n− 3, n− 1, n− 2, n)

= wn−2
(n−3)n − w

n−2
(n−3)(n−1) + wn−1

n(n−2) − w
n−1
(n−1)(n−2) + wn(n−2)(n−1)

− wn(n−2)n (92)

fn,n−1,i = (0, πi(n−2), n− 2, n, n− 1, i)− (0, πi(n−2), n− 2, i, n− 1, n)

= wn−2
(n−2)n − w

n−2
(n−2)i + wn−1

n(n−1) − w
n−1
i(n−1) + wn(n−1)i − wn(n−1)n

i ∈ N \ {n− 2, n− 1, n}. (93)

Combinations (81) to (89) form an upper triangular matrix with unit deter-
minant and are thus affinely independent. One can also check that (90) to
(93) are affinely independent from all other combinations. Indeed, each com-
bination (90) contains terms wn−1

ij , wnij and no wnjn nor wnnj, (91) (resp. (92))
contains terms wni(n−1), w

n
in and no wnn(n−1), w

n
(n−1)n nor wn(n−1)i (resp. the

same terms with i = n − 2), while (93) contains terms wn(n−1)i, w
n
(n−1)n and

no wnn(n−1) nor wni(n−1).

There are n − 1 combinations of class f 2,i,n or f 2,n−1,n, (n − 2)2(n − 3)

26

combinations of class f t,i,j, and 3(n − 2)2 combinations among the classes
f t,i,n−1, f t,n−2,n−1, f t,n−1,i, f t,n−1,n−2, f t,n,i or f t,n,n−2. Further, there are
(n − 2)(n − 3) combinations of class fn,i,j and 2n − 5 combinations among
the classes fn,i,n−1, fn,n−2,n−1 and fn,n−1,i. The result follows. �

Acknowledgments

This work was partly funded by the Canadian Natural Sciences and Engi-
neering Research Council under grants 227837-04 and 39682-05. This support
is gratefully acknowledged.

References

[1] N. Ascheuer. Hamiltonian path problens in the online optimization
of flexible manufacturing systems. PhD thesis, Technische Universität
Berlin, 1995.

[2] N. Ascheuer, M. Fischetti, and M. Grötschel. A polyhedral
study of the asymmetric travelling salesman problem with time win-
dows. Mathematical Programming Series A, 90:475–506, 2000.

[3] N. Ascheuer, M. Fischetti, and M. Grötschel. Solving the asym-
metric travelling salesman problem with time windows by branch-and-
cut. Networks, 36:69–79, 2000.

[4] E.K. Baker. An exact algorithm for the time-constrained traveling
salesman problem. Operations Research, 31:938–945, 1983.

[5] E. Balas, M. Fischetti, and W.R. Pulleyblank. The precedence-
constrained asymmetric traveling salesman polytope. Mathematical Pro-
gramming, 68:241–265, 1995.

[6] L. Bianco, A. Mingozzi, and S. Ricciardelli. The traveling sales-
man problem with cumulative costs. Networks, 23:81–91, 1993.

[7] L. Bianco, A. Mingozzi, and S. Ricciardelli. Dynamic program-
ming strateges and reduction techniques for the travelling salesman
problem with tme windows and precedence constraints. Operations Re-
search, 45:365–377, 1997.

27

[8] L.-P. Bigras, M. Gamache, and G. Savard. The time-dependent
traveling salesman problem and single machine scheduling problems
with sequence dependent setup times. Discrete Optimization, 5:685–
699, 2008.

[9] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation
procedures for the computation of bounds to routing problems. Net-
works, 11:145–164, 1981.

[10] Y. Dumas, J. Desrosiers, and E. Gélinas. An optimal algorithm for
the traveling salesman problem with time windows. Operations Research,
43:367–371, 1995.

[11] M. Fischetti, G. Laporte, and S. Martello. The delivery man
problem and cumulative matroids. Operations Research, 41:1055–1064,
1993.

[12] F. Focacci, A. Lodi, and M. Milano. A hybrid exact algorithm for
the TSPTW. INFORMS Journal on Computing, 14:403–417, 2002.

[13] K.R. Fox, B. Gavish, and S.C. Graves. An n-constraint formula-
tion of the (time-dependent) traveling salesman problem. Operations
Research, 28:1018–1021, 1980.

[14] M. Gendreau, A. Hertz, G. Laporte, and M. Stan. A general-
ized insertion heuristic for the traveling salesman problem with time
windows. Operations Research, 43:330–335, 1998.

[15] L. Gouveia and P. Pesneau. On extended formulations for the prece-
dence constrained asymmetric traveling salesman problem. Networks,
48:77–89, 2006.

[16] L. Gouveia and J.M. Pires. The asymmetric traveling salesman
problem: on generalizations of disaggregated Miller-Tucker-Zemlin con-
straints. Discrete Applied Mathematics, 112:129–145, 2001.

[17] A.B. Keha, K. Khowala, and J.W. Fowler. Mixed integer program-
ming formulations for single machine scheduling problems. Computers
& Operations Research, 36:2122–2131, 2009.

28

[18] A. Langevin, M. Desrochers, J. Desrosiers, S. Gélinas, and
F. Soumis. A two-commodity flow formulation for the traveling sales-
man and makespan problems with time windows. Networks, 23:631–640,
1993.

[19] A.N. Letchford, J. Lysgaard, and R.W. Eglese. A branch-and-cut
algorithm for the capacitated open vehicle routing problem. Journal of
the Operational Research Society, 58:1642–1651, 2007.

[20] F. Li, B.L. Golden, and E.A. Wasil. The open vehicle routing prob-
lem: algorithms, large-scale test problems, and computational results.
Computers & Operations Research, 34:2918–2930, 2007.

[21] A. Lucena. Time-dependent traveling salesman problem - the deliv-
eryman case. Networks, 20:753–763, 1990.

[22] V. Mak and A.T. Ernst. New cutting-planes for the time and/or prece-
dence constrained ATSP and directed VRP. Mathemathical Methods of
Operations Research, 66:69–98, 2007.

[23] I. Méndez-D́ıaz, P. Zabala, and A. Lucena. A new formulation
for the traveling deliveryman problem. Discrete Applied Mathematics,
156:3223–3237, 2008.

[24] T. Öncan, I.K. Altinel, and G. Laporte. A comparative analysis of
several asymmetric traveling salesman problem formulations. Computers
& Operations Research, 36:637–654, 2009.

[25] G. Pesant, M. Gendreau, J.-Y. Potvin, and J.-M. Rousseau. An
exact constraint logic programming algorithm for the traveling salesman
problem with tme windows. Transportation Science, 32:12–29, 1998.

[26] J.-C. Picard and M. Queyranne. The time-dependent traveling
salesman problem and its application to the tardiness problem in one-
machine scheduling. Operations Research, 26:86–110, 1978.

[27] M. Queyranne and A.S. Schulz. Polyhedral approaches to machine
scheduling. Technical Report 408, Department of Mathematics, Techni-
cal University of Berlin, 1994.

29

[28] G. Reinelt. TSPLIB A traveling salesman problem library. ORSA
Journal on Computing, 3:376–384, 1991.

[29] P.P. Repoussis, C.D. Tarantilis, and G. Ioannou. The open vehicle
routing problem with time windows. Journal of the Operational Research
Society, 58:355–367, 2007.

[30] M.W.P. Savelsbergh. Local search for routing problems with time
windows. Annals of Operations Research, 4:285–305, 1985.

[31] M.W.P. Savelsbergh. The vehicle routing problem with time windows:
minimizing route duration. ORSA Journal on Computing, 4:146–154,
1992.

[32] C.A. van Eijl. A polyhedral approach to the delivery man problem.
Technical Report Memorandum COSOR 95-19, Eindhoven University
of Technology, The Netherlands, 1995.

[33] R. Wolfler Calvo. A new heuristic for the traveling salesman prob-
lem with time windows. Transportation Science, 34:113–124, 2000.

30

