
The Attractive Traveling Salesman Problem

Güneş Erdoğan ∗,† Jean-François Cordeau ∗ Gilbert Laporte †

August 14, 2007

Abstract

In the Attractive Traveling Salesman Problem the vertex set is partitioned

into facility vertices and customer vertices. A maximum profit tour must be

constructed on a subset of the facility vertices. Profit is computed through an

attraction function: every visited facility vertex attracts a portion of the profit

from the customer vertices based on the distance between the facility and cus-

tomer vertices, and the attractiveness of the facility vertex. A gravity model

is used for computing the profit attraction. The problem is formulated as an

integer non-linear program. A linearization is proposed and is strengthened

through the introduction of valid inequalities, and a branch-and-cut algorithm

is developed. A tabu search algorithm is also implemented. Computational

results are reported.

Keywords: traveling salesman problem, demand attraction, demand alloca-

tion, linearization, branch-and-cut, tabu search.

1 Introduction

The purpose of this paper is to introduce a new variant of the Traveling Salesman

Problem (TSP), called the Attractive Traveling Salesman Problem (ATSP). The
ATSP is defined on an undirected graph G = (V ∪W, E), where V ∪W is the vertex

∗Canada Research Chair in Logistics and Transportation, HEC Montréal, 3000 Chemin de la

Côte-Sainte-Catherine, Montréal, Canada H3T 2A7
†Canada Research Chair in Distribution Management, HEC Montréal, 3000 Chemin de la Côte-

Sainte-Catherine, Montréal, Canada H3T 2A7

1

set and E = {(vi, vj) : vi, vj ∈ V ∪ W, i < j} is the edge set. The set V is a set of
facility vertices, while the set W is a set of customer vertices. Let T be a subset of
compulsory vertices of V , including a depot v0. A distance dij and a travel time tij
are associated with each edge (vi, vj). A profit pk is associated with each customer
vertex vk. Each facility vertex vi on the tour, apart from the depot, generates a profit
derived from the customer vertices, which is measured by an attraction function to
be defined later. Including vertex vi in the cycle generates a dwell time ri. The cycle
length, including travel and dwell times, may not exceed an upper limit L. The aim
of the ATSP is to design a cycle or tour of maximal profit, including all vertices of
T and possibly some vertices of V \ T , subject to the length constraint.

An application of the ATSP arises in the planning of a tour of a mobile enter-
tainment facility such as a circus or a theater company. The amount of time that
can be spent by the mobile facility is limited. Visiting a facility vertex generates a
profit. Facilities with extra services and closer to the larger population centers are
assumed to be more attractive from the customers’ point of view, and consequently
visiting these facilities is more profitable. Another application arises in the routing
of a military reconnaissance vehicle. In this application, the customer sites are the
enemy installations or encampments, the facility sites are the possible observation
points, and the travel distance limit is dictated by either the fuel capacity or the
allowed duration of the mission. The attractiveness of a candidate observation point
may be perceived as a function of its visibility range and concealment factor. The
objective function becomes the maximization of information gathered. Yet another
application is the design of a route for a mobile health care facility operating in an
underdeveloped region. Typically, such a facility can only visit a subset of locali-
ties accessible by the main road network. Population centers located outside these
localities access them on foot. The accessibility problem is exacerbated during the
rainy seasons when only paved roads can be used by the mobile facility (Oppong
and Hodgson, 1994; Hodgson, Laporte, and Semet, 1998).

There exist many studies on Traveling Salesman Problems with Profits. A recent
survey by Feillet, Dejax, and Gendreau (2005) lists 95 references. This survey cat-
egorizes the problems into three classes, based on how the objectives of minimizing
distance and maximizing profit are handled. The first class consists of problems in
which both of the objectives are combined in the objective function. The second
class is composed of problems in which the travel cost is a constraint and the objec-
tive is to maximize the profits collected. Finally, the problems in which the profit is a
constraint and the objective is to minimize the travel cost constitute the third class.
According to this categorization our problem is closest to the problems in the second

2

class, together with the Orienteering Problem (Golden, Levy, and Vohra, 1987), the
Maximum Collection Problem (Kataoka and Morito, 1988), and the Selective Trav-

eling Salesman Problem (Laporte and Martello, 1990). The most successful exact
study regarding this class of problems is the one by Fischetti, Salazar González, and
Toth (1998), in which the authors were able to solve instances involving up to 500
vertices within a few hours, using a branch-and-cut algorithm. The most successful
heuristic for this class of problems is due to Gendreau, Laporte, and Semet (1998).
These authors use a tabu search algorithm to solve instances involving up to 300
vertices in a few minutes, with an optimality gap typically less than 1%.

In all these studies profits are assumed to be collected from the visited vertices,
implicitly implying that customer and facility vertices coincide, which may not be
the case in all applications. As an example from the entertainment sector, race
tracks are usually built outside the urban centers to avoid the noise and pollution
generated by these facilities. Similarly, ski slopes are located in the mountainous
areas, which are usually at a significant distance from the major population centers.
In our study, we assume that the facility vertices and customer vertices do not
coincide, although they can be arbitrarily close. This distinction also allows the
division of the demand of a population center into smaller parts located around the
facility, thereby permitting a finer aggregation of the demand data.

Because the sets of customer and facility vertices are disjoint, the questions of
how much demand is captured and how the captured demand is allocated to facilities
arise. To the best of our knowledge these questions have not been fully addressed in
the literature on routing, perhaps because customer and facility vertices are usually
not separated. There are a few notable exceptions. In Lee, Chiu, and Sanchez
(1998), the authors define and study the Steiner Ring Star Problem, in which a
tour over a subset of the facility vertices must be determined; the demand of a
customer vertex is assumed to be assigned to the closest visited facility vertex. The
objective is to minimize the sum of travel and assignment costs. In two closely
related studies by Labbé, Laporte, Rodriguez-Mart́ın, and Salazar González (2004,
2005), the authors solve the Ring Star Problem and the Median Cycle Problem. The
difference between the problem studied in the former paper and the Steiner Ring
Star Problem is that there is no distinction between facility and customer vertices,
and each vertex can be visited. In the Median Cycle Problem, the objective is to
minimize the routing cost, and there is an upper bound on the assignment cost.
Another exception is the set of problems with covering aspect, such as the Covering

Tour Problem introduced by Current in 1981, where a customer vertex is covered if
it is within a prespecified distance of a visited facility vertex, and all the demand of

3

a customer vertex is assumed to be attracted to the visited facility vertices within
the coverage range.

Demand attraction and allocation functions have been studied in the compet-
itive location literature. The reader is referred to Drezner (1995) for a survey of
competitive facility location models, and to Eiselt and Laporte (1998) for a critical
review of demand allocation functions. It has been suggested by Hotelling (1929)
that each customer patronizes the closest facility in a winner-takes-all manner, given
that prices are identical. Much later, based on the gravity model of Reilly (1931),
Huff (1964, 1966) has used a gravity function by which the probability Pki that a
customer at vk patronizes a given facility vi is proportional to the attractiveness
of the facility, and inversely proportional to some power of the distance between
the customer and the facility. In subsequent work, Hodgson (1981) has advocated
using an exponential distance decay function rather than a polynomial one. Drezner
and Drezner (2002) have tested and validated Huff’s gravity based model using real
world data, both for the polynomial and the exponential distance decay functions.
One of the authors’ conclusions is that the results are not sensitive to the choice of
the distance decay function. The gravity based model has been used in the studies
by Jain and Mahajan (1979), Drezner (1994), Bell, Ho, and Tang (1998), and more
recently by Drezner and Drezner (2004, 2006, and 2007). Encouraged by these stud-
ies, we have chosen the gravity based model for determining the demand attraction
and allocation.

The remainder of the paper is organized as follows. In Section 2, we provide a
definition of the attraction function, we formally define the problem, we present a
proof of NP-hardness, and we introduce a non-linear formulation. In Section 3, we
propose a linearization scheme involving an infinite number of potential constraints,
as well as valid inequalities. We describe a branch-and-cut algorithm for the problem
in Section 4, and a tabu search algorithm in Section 5. Computational results for
both the branch-and-cut and tabu search algorithms are presented in Section 6. In
Section 7, we analyze an extension of the problem where there may be more than
one option of service at the facility vertices. Conclusions follow in Section 8.

2 The Model

Based on Huff’s gravity function, we derive a general formula for the probability Pki

that a customer from vertex vk patronizes a facility at vertex vi:

4

Pki =

ai

dq
ki∑

vj∈V \{v0}

aj

dq
kj

, (1)

where ai is the attractiveness of the facility at vertex vi, and q ≥ 1 is a parameter.
The attractiveness ai of vertex vi is based on the size, services, and other factors
related to that facility.

One shortcoming of the demand attraction function (1) is the assumption that
demand is never lost. In reality, some customers may choose not to get the service
because substitute services are more attractive, or the visited facility vertices are
too far away to be reached conveniently. To cope with this problem, we apply a
minor modification to (1). Let bk be the self-attraction of customer vertex vk. Then
the formula becomes:

Pki =

ai

dq
ki

bk +
∑

vj∈V \{v0}

aj

dq
kj

. (2)

An interpretation of bk is an estimate of substitute services available for vertex vk.

While this modified allocation function suits our purposes better, it also violates
the principle of insensitivity to scaling (Eiselt and Laporte, 1998) because of the
constant in the denominator. That is, any scaling change in the distance or the
attractiveness measurement will change the demand allocation. A simple way to
overcome this problem is to redefine all parameters as the result of the division of the
original parameters by its minimum, i.e. dij := dij/min{dkl|vk, vl ∈ V ∪W, vk 6= vl},
ai := ai/min{aj|vj ∈ V \{v0}} and modify the estimates for all bk values accordingly.

We now prove that ATSP is NP-hard by a reduction from the Selective Traveling
Salesman Problem.

Selective Traveling Salesman Problem (STSP): Given a graph G = (V, E), a
set T ⊂ V of compulsory vertices, a distance dij associated with every edge in E, a
limit on the total distance traveled L, and a positive integer profit pi associated with
each vertex in V , determine a maximal profit cycle whose length does not exceed L.
STSP was proved to be NP-hard by Laporte and Martello (1990).

Proposition 1. ATSP is NP-hard.

5

Proof: We construct a reduction from the recognition form of the STSP. Take an
arbitrary instance of the STSP. The recognition form of STSP is the question of
the existence of a solution with objective function value greater than or equal to
K. Construct an instance of the ATSP by adding a single customer vertex vs, at
an arbitrary distance dis from every vertex vi ∈ V , with a total profit of 1, and a
self-attraction value of 1, i.e., W = {vs}, ps = 1, bs = 1. Set the attractiveness
of each vertex facility vi ∈ V to ai = pid

q
is. Let tij = dij, ri = 0. This setting of

parameters results in an objective function f(x)/(f(x) + 1) for the ATSP, where
f(x) is the objective function of the STSP. Since f(x) ≥ 0, clearly f(x) ≥ K if and
only if f(x)/(f(x) + 1) ≥ K/(K + 1). Solving this instance of the ATSP amounts
to solving the STSP instance at hand, so ATSP is at least as hard as STSP. �

We conclude this section by giving a non-linear integer programming formulation
of the ATSP. Let xij (i < j) be equal to 1 if the vehicle traverses edge (i, j) and
0 otherwise, and let yi be equal to 1 if vertex i is visited and 0 otherwise. The
formulation is as follows:

(ATSP1)

maximize
∑

vk∈W

pk

∑

vi∈V \{v0}

Pik =
∑

vk∈W

pk

∑

vi∈V \{v0}

ai

dq
ki

yi

bk +
∑

vj∈V \{v0}

aj

dq
kj

yj

(3)

subject to

∑

vi∈V,i<j

xij +
∑

vi∈V,i>j

xji = 2yj (vj ∈ V) (4)

∑

vi∈S,vj∈V \S
or vi∈V \S,vj∈V

xij ≥ 2yt (S ⊂ V : 2 ≤ |S| ≤ |V | − 2, T \ S 6= ∅, vt ∈ S) (5)

∑

vi,vj∈V

tijxij +
∑

vi∈V

riyi ≤ L (6)

yi = 1 (vi ∈ T) (7)

yi = 0 or 1 (vi ∈ V \ T) (8)

xij = 0 or 1 ((vi, vj) ∈ E). (9)

6

The objective function (3) maximizes the profit generated from the customer
vertices. Constraints (4) are degree constraints, and constraints (5) are connectivity
constraints (Gendreau, Laporte, and Semet, 1997). Constraints (6) impose a maxi-
mal tour duration, while constraints (7) state that all vertices of T must be visited.
Other integrality constraints are defined by (8) and (9).

3 Linearization Scheme and Valid Inequalities

In ATSP1, the objective function (3) consists of the sum of |W |(|V | − 1) ratios of
linear functions. This brings the problem into the domain of fractional program-
ming, the elements of which are continuous optimization problems with sums of one
or more ratios of functions. For a comprehensive survey of algorithms and literature
on fractional programming, we refer to reader to Schaible (1995, 1996), Freund and
Jarre (2001), and Benson (2004). The case of a single ratio of two linear functions
and a polyhedron of feasible solutions is well solved, and can be handled through
linear programming methods. However, the general fractional programming prob-
lem with more than a single ratio (also known as the sum-of-ratios problem) remains
hard. It has been shown by Freund and Jarre (2001) that the sum-of-ratios prob-
lem is NP-complete. Most available algorithms for fractional programming with
multiple ratios are based on sophisticated non-linear optimization algorithms, or on
branch-and-bound. However, ATSP is a particular discrete optimization problem
and standard methods are too time consuming to be used for solving the subprob-
lems.

We first show that our problem possesses a special structure, which gives way to
a relatively simple linearization scheme using valid inequalities. To the best of our
knowledge linearizing fractional programming problems using valid inequalities is a
new idea.

Notice that all terms in the second summation in (3) have the same denominator,
allowing us to rewrite it as:

maximize
∑

vk∈W

pk

∑

vi∈V \{v0}

ai

dq
ki

yi

bk +
∑

vi∈V \{v0}

ai

dq
ki

yi

. (10)

7

Let wk =
∑

vi∈V \{v0}

ai

dq
ki

yi, so that (10) simplifies to

maximize
∑

vk∈W

pk

wk

bk + wk

. (11)

Each of the functions fk(wk) = wk/(bk + wk) is concave in wk for wk > −bk and
can be approximated by an upper envelope consisting of linear tangents. Formally,
at point w∗

k:

fk(wk) =
wk

bk + wk

≤
bkwk

(bk + w∗
k)

2
+ (

w∗
k

bk + w∗
k

−
bkw

∗
k

(bk + w∗
k)

2
)

=
bkwk

(bk + w∗
k)

2
+

(w∗
k)

2

(bk + w∗
k)

2
. (12)

Let zk denote the percent of profit captured from customer vertex vk, i.e. zk =
wk/(bk + wk), and let y∗ be the vector of y∗

i variables yielding w∗
k. Rewriting (12) in

terms of zk, wk, and bk gives

zk ≤

bk(
∑

vi∈V \{v0}

ai

dq
ki

yi)

(bk +
∑

vi∈V \{v0}

ai

dq
ki

y∗
i)

2
+

(
∑

vi∈V \{v0}

ai

dq
ki

y∗
i)

2

(bk +
∑

vi∈V \{v0}

ai

dq
ki

y∗
i)

2
. (13)

These constraints will be referred to as the linearization constraints. Using the
same reasoning, this idea can be generalized and formalized as follows:

Proposition 2. Let x ∈ X ⊆ Rn, a ∈ Rn, and b, c, d, e, f ∈ R. Define g(x) =
(c(ax + b) + d)/(e(ax + b) + f). If −2(cf − ed)/(e(ax + b) + f)3 ≤ 0, ∀x ∈ X, then
the following inequality is valid ∀x∗ ∈ X:

g(x) ≤
(cf − ed)(ax + b)

(e(ax + b) + f)2
+

c(ax∗ + b) + d

e(ax∗ + b) + f
−

(cf − ed)(ax∗ + b)

(e(ax∗ + b) + f)2
. (14)

We can now state our linearization:

(ATSP2)

maximize
∑

vk∈W

pkzk (15)

8

subject to
0 ≤ zk ≤ 1 (vk ∈ W). (16)

and (4), (5), (6), (7), (8), (9), (13).

ATSP2 may be strengthened through the introduction of certain valid inequali-
ties proposed for the Covering Tour Problem (Gendreau, Laporte, and Semet, 1997).
The proofs of validity are identical for both problems.

1) Arc-vertex constraints :

Proposition 3. The inequalities

xij ≤ yi (vi, vj ∈ V) (17)

and

xij ≤ yj (vi, vj ∈ V) (18)

are valid for ATSP2.

2) Strong connectivity constraints :

Proposition 4. The inequalities

∑

vi∈S,vj∈V \S
or vi∈V \S,vj∈V

xij ≥ 2 (S ⊂ V : 2 ≤ |S| ≤ |V | − 2, T \ S 6= ∅, S ∩ T 6= ∅) (19)

are valid for ATSP2.

3) Strong 2-matching constraints :

Proposition 5. The following inequalities are valid for ATSP2:

∑

vi,vj∈H

xij +
∑

vi,vj∈E′

xij ≤
∑

vi∈H

yi +
1

2
(|E ′ − 1|), (20)

for all H ⊂ V and E ′ ⊂ E satisfying

(i) |{vi, vj} ∩ H| = 1 ((vi, vj) ∈ E ′),

(ii) {vi, vj} ∩ {vk, vl} = ∅ ((vi, vj) 6= (vk, vl) ∈ E ′),

(iii) |E ′| ≥ 3 and odd.

9

4 Branch-and-Cut Algorithm

We now describe a branch-and-cut algorithm using the linearization scheme and
valid inequalities just introduced.

Step 1 (Lower bound). Compute a lower bound z on the optimal solution of the
problem, using a heuristic.

Step 2 (Root node). Construct the linear relaxation of ATSP2 without the
connectivity constraints and the linearization constraints. Insert this subproblem in
a list.

Step 3 (Node selection). If the list is empty, stop. Else select and remove a
subproblem form the list according to a best-first criterion.

Step 4 (Subproblem solution). Solve the subproblem. Let z∗ be the objective
function value, and let x∗, y∗ be the vector values taken by the x and y variables.
If z∗ ≤ z, go to Step 3.

Step 5 (Constraint generation). Generate all identified violated connectiv-
ity constraints, linearization constraints, arc-vertex constraints, strong connectivity
constraints, and strong 2-matching constraints, and add them to the subproblem.
If at least one constraint is generated, go to Step 4.

Step 6 (Integrality check). If the solution is integer, set z = z∗, and go to Step
3.

Step 7 (Branching). Construct two subproblems by branching on a binary frac-
tional variable with the highest pseudo-cost (Gauthier and Ribière, 1977). Add the
subproblems to the list and go to Step 3.

The algorithm is handled by CPLEX, except for Step 5. The separation algo-
rithms for the constraints to be added during the branch-and-cut algorithm are now
outlined.

Linearization constraints: Although there are infinitely many members of this
constraint set, any violated member can be identified in O(|W ||V |) time by simply
plugging in the y∗ and z∗ values. This procedure is equivalent to generating the
linear tangent at the current fractional point.

Arc-vertex constraints: Violated elements of this valid inequality set can be
identified straightforwardly in O(|V |2) time.

Connectivity constraints: Violated members of the connectivity constraints can
be identified by solving a Maximum Flow Problem from each vi ∈ T to each vj ∈
V \T , on a network where the upper bounds on the flows are given by the x∗ values.

10

If the maximum flow is less than 2y∗
j , then a violated inequality has been identified

along the sets S and T separated by the minimum cut. The complexity of this
procedure is O(|T ||V |2|E|2), assuming the Maximum Flow Problem is solved by the
Edmonds-Karp algorithm (1972).

Strong connectivity constraints: Violated members of the strong connectivity
constraints can be identified by solving a Maximum Flow Problem for each pair
of elements from |T |, in O(|T |2|V ||E|2) time with the Edmonds-Karp algorithm.
We solve a Maximum Flow Problem for each consecutive pair of vertices from any
ordering of the elements of T , which reduces the complexity to O(|T ||V ||E|2) and
does not result in a significant loss of quality in the lower bound.

Strong 2-matching constraints: To identify the violated strong 2-matching in-
equalities, we use the heuristic of Padberg and Rinaldi (1990). We first identify
all blocks of the graph induced by the fractional flow variables. We then take each
block to be H and try to find a violated inequality by adding edges to E ′, which
have an endpoint in H and another in V \ H , in a greedy manner.

5 Tabu Search Heuristic

Although the linearization scheme presented in the previous section gives way to
a branch-and-cut algorithm, we find it necessary to devise a heuristic for the large
instances that may exceed the memory and computing time requirements. We now
give the outline of our tabu search heuristic for ATSP.

We define the insertion neighborhood to be the set of vertices not included in
the tour. The deletion neighborhood is defined as the set of vertices included in the
tour but not in the tabu list.

Parameters:

κ : Number of iterations since the last update of the best solution value.

η : The maximum number of iterations without updating the best solution.

λ : A parameter for determining the frequency of diversification.

θ : The number of iterations a vertex stays in the tabu list.

Step 1 (Initialization). Construct a random sequence of the vertices in T \ {v0},
and append {v0} to the beginning and end of the sequence to construct a tour.
Resequence the tour with the GENIUS algorithm of Gendreau, Hertz, and Laporte
(1992) to minimize the total travel time. If the this time is larger than L, stop: the

11

algorithm has failed to find any feasible solution. Else, record the tour as the best
solution. Set κ = 1.

Step 2 (Search type). If κ = η, stop. Else if κ is a multiple of λθ go to Step 5.

Step 3 (Local search – insertion). For every vertex v in the insertion neighbor-
hood, try to insert v in the tour and resequence the tour to minimize the total travel
time. If the tour is feasible and has a solution value higher than the best solution,
replace the best solution with the tour at hand, and set κ = 1. If v is not an element
of the tabu list, the tour is feasible, and has a solution value higher than the best
candidate, set v as the best insertion candidate. Insert the best insertion candidate
in the tour, add it to the tabu list, and go to Step 6. If no such candidate is found,
go to Step 4.

Step 4 (Local search – deletion). For every vertex v in the deletion neighborhood
and not in the tabu list, try to delete v from the tour and resequence the tour to
minimize the total travel time. If the resulting tour is feasible, and has a solution
value higher than the best candidate, set v as the best deletion candidate. Delete
the best deletion candidate from the tour, add it to the tabu list, and go to Step 6.

Step 5 (Diversification). Sort the elements v ∈ V \ T that are not in the tour
in ascending number of times each element has been added to the tour. For each
element v in the sorted list, insert v in the tour and resequence the tour to minimize
the total travel time. If the tour is feasible, add v to the tabu list, and go to Step 6.
If no insertions are possible, identify a vertex v ∈ V \ T in the tour that has been
removed from the tour the least number of times. Remove v from the tour, add v to
the tabu list, resequence the tour to minimize the total travel time, and go to Step
6.

Step 6 (Tabu list update). Increase the tabu tenure of each vertex in the tabu
list by one. Remove from the tabu list the vertices having a tabu tenure greater
than or equal to θ . Increase κ by 1. Go to Step 2.

6 Computational Results

We have implemented a branch-and-cut algorithm based on ATSP2 and on the valid
inequalities presented in Propositions 3, 4, and 5. The algorithm was implemented
using CPLEX 10.0.1 on a workstation with a 3.0 Ghz CPU and 1 GB of RAM.
We have used q = 2 in (2). We have attempted to solve three sets of randomly
created problem instances for |V | = 50, 100, and 150. For each instance set, varying

12

values of |W | and |T | were imposed to analyze the effect of these parameters on the
performance of the algorithm. Five instances for each setting have been created,
resulting in a total of 180 instances. A computing time limit of one hour was
imposed on the solution of any instance. The results are given in Tables 1, 2, and
3, respectively. The column headings are defined as follows:

Succ. : Number of instances successfully solved to optimality.

Avg. Dev. : Average deviation of the best solution found from the best upper
bound.

Max. Dev. : Maximum deviation of the best solution found from the best upper
bound.

Linearization : Average number of linearization constraints added.

Arc-vertex : Average number of arc-vertex constraints added.

Str. Conn. : Average number of strong connectivity constraints added.

Str. 2-Match : Average number of strong 2-matching constraints added.

Nodes : Average number of nodes generated in the branch-and-cut tree.

Tour size : Average number of vertices included in the best solution found.

Seconds : Average CPU time in seconds.

Opt. : Optimal objective function value.

Computational results presented in Tables 1, 2 and 3 offer insights in the internal
mechanics of the problem. As expected, the number of linearization constraints
increases with |W |. The number of arc-vertex inequalities decreases as |T | increases,
suggesting that the underlying LP cannot exploit the fractional variables for large
values of |T |. Another conclusion we can draw from the tables is that the problem
is harder for lower values of |T |. This can be explained by the fact that fewer yi

variables are fixed when |T | is small and by the increase in the number of strong
connectivity constraints. We note that CPLEX generated few cover and generalized
upper bound cover inequalities. Finally, the problem is harder for smaller values of
optimal tour size, and hence smaller values of L. This can be explained as follows.
First observe that the slope of the curve in Figure 1 is larger in the region closer to the
origin. This implies that even small changes in the value of wk in this interval cause
important changes in the overall objective function value. Hence, the underlying LP
has more opportunities to exploit the fractional variables. As wk increases beyond
a certain point, the marginal changes do not affect the overall objective function
value, and the problem becomes easier.

13

To ensure the repeatability of our results, we have also conducted experiments on
instances adapted from TSPLIB (Reinelt, 1991). We have used the following scheme
to convert the data for our problem. We take the first vertex in the data file to be
the depot. We designate the next |T | − 1 vertices together with the first vertex to
constitute T . The next |V |−|T | vertices are used as elements of V \T . The remaining
vertices are the elements of W . The attractiveness values of the facility vertices and
the profit values of the customer vertices are computed as (⌊X + Y ⌋mod100) +
1. Let Xmax, Xmin, Ymax, Ymin denote the maximum X coordinate, minimum X
coordinate, maximum Y coordinate, and minimum Y coordinate of all vertices,
respectively. We compute dij using the Euclidean distance formula, and set tij = dij,
ri = (Xmax − Xmin + Ymax − Ymin)/10 for all vi ∈ V , and L = r|T | + 2.5(Xmax −
Xmin + Ymax − Ymin). The self-attraction value of each customer vertex is set to the
value that will ensure that 70% of the profit is captured if only the closest facility
vertex is visited. The results of the instance files constructed in this manner are
presented in Table 4.

We have also implemented the tabu search heuristic described in Section 5. In
our computational experiments, we have set the tabu tenure limit θ to 10, the
diversification parameter λ to 3, and the iteration limit η to 300. The results of
this algorithm are given in Table 5. Note that in all of the 180 instances tested, the
overall maximum deviation from the upper bound is about 3.25% and the overall
average deviation is 0.28%. The computing times were no more than four minutes.
We have also applied the tabu search algorithm to the instances adapted from the
TSPLIB. The longest of those runs took about 15 seconds. The maximum deviation
was 0.74% and the average deviation was 0.04%. We were able to find an optimal
solution in 31 out of the 36 instances.

7 Extension: More Than One Service Option

In closing, we define an interesting extension of the ATSP. In real world applications,
there may be more than one option for visiting a facility vertex. These options may
differ in service time length and the attractiveness values they yield. For example,
a circus may be given the opportunity to select a stay of one week or two weeks
at a certain facility. In the military example, the reconnaissance vehicle may opt
to stay at an observation point for a longer period to gather more information.
Similarly, a mobile medical team may opt for various lengths of stay. Let ril denote
the service time for vertex i and option l and al

i denote the attractiveness of facility

14

at vertex i for option l. It is clear that for service options α and β at vertex i, if
Sα

i ≥ Sβ
i and riα ≤ riβ, then option α dominates option β. This implies that we

can safely assume without loss of generality, that a longer service time results in a
higher attractiveness.

There are two possible ways of constructing a model for the extension. The
first is the insertion of a copy of the vertex in the graph for each different service
option. This path of implementation would also require that no more than one
copy of a facility vertex may be visited. The second possiblity consists of splitting
the variable yi into mi parts, where mi denotes the number of options available at
vertex vi. Namely, let ȳil be equal to 1 if vertex vi is visited with option l, and 0

otherwise. Note that

mi∑

l=1

ȳil = yi. This modeling option is more convenient in terms

of implementation and causes a smaller increase in the problem size. We now give
the updated linearization for the extension.

(ATSP3)

maximize
∑

vk∈W

Pkzk (21)

subject to

∑

vi∈V,i<j

xij +
∑

vi∈V,i>j

xji = 2

mj∑

l=1

ȳjl (vj ∈ V) (22)

∑

vi∈S,vj∈V \S
or vi∈V \S,vj∈V

xij ≥ 2
mt∑

l=1

ȳtl (S ⊂ V : 2 ≤ |S| ≤ |V | − 2, T \ S 6= ∅, vt ∈ S) (23)

∑

vi,vj∈V

tijxij +
∑

vi∈V

mi∑

l=1

ȳil ≤ L (24)

mi∑

l=1

rilȳil = 1 (vi ∈ T) (25)

15

mi∑

l=1

rilȳil ≤ 1 (vi ∈ V \ T) (26)

zk ≤

bk(
∑

vi∈V \{v0}

ai

dq
ki

(

mi∑

l=1

ȳil))

(bk +
∑

vi∈V \{v0}

ai

dq
ki

(

mi∑

l=1

ȳ∗
il))

2

+

(
∑

vi∈V \{v0}

ai

dq
ki

(

mi∑

l=1

ȳ∗
il))

2

(bk +
∑

vi∈V \{v0}

ai

dq
ki

(

mi∑

l=1

ȳ∗
il))

2

(27)

yil = 0 or 1 (vi ∈ V, l ∈ {1, 2, ..., mi}) (28)

xi = 0 or 1 ((vi, vj) ∈ E). (29)

Note that the strong connectivity constraints are not affected by this extension
since they do not involve y variables; similarly, the arc-vertex constraints and strong

2-matching constraints are still applicable after the transformation

mi∑

l=1

ȳil = yi.

For the computational experiments with ATSP3, we have constructed a new
set of instances using the TSPLIB instances. The self-attraction of each customer
vertex is set to the value that will ensure that 40% of the profit is captured if only the
closest facility vertex is visited for the first (shortest) option, computed using (2).
Facility vertices can be visited for one, two, or three time units. We have assumed
that the unit k of the stay has 0.9k−1 times the attractiveness of the facility. The
results of the computational experiments with ATSP3 are given in Table 6. The
new column headings are defined as follows:

Best Sol. : Objective value of the best solution found by the branch-and-cut
algorithm.

B & C Dev. : Deviation of the best solution found by the branch-and-cut algorithm
from the best upper bound.

TS Dev. : Deviation of the best solution found by the tabu search algorithm from
the best upper bound.

Seconds : CPU time for the branch-and-cut algorithm in seconds.

The problem becomes harder as the number of possible choices increase. As a
result the computation times increase a hundredfold on average when compared with
Table 4. As with the original problem, the hardest instances occur when |T | = 1. We
were able to solve 31 instances out of 36 to optimality within one hour of computing
time. The maximum observed optimality gap is 12.34% for one of the instances.

16

We have adapted the tabu search algorithm described in Section 5 to cope with
the extended problem, by simply adding a copy of each vertex to the graph for each
extra unit of stay, with the associated attraction value modified appropriately. We
would like to comment here that this approach is not feasible for the case when
extra units of stay are actually more attractive than the first ones, i.e., the marginal
gain is increasing. However, this case is not likely to be observed in practice. The
deviations of the results of the tabu search algorithm are also included in Table 6.
The average deviation is 1.92%, whereas the maximum run time is about a minute.

8 Conclusion

We have defined, analyzed, and solved a variant of the TSP, where the profit is
attracted from customer vertices by visiting facility vertices, rather than collected
by visiting customer vertices. We have used a non-linear gravity demand allocation
function to formulate the problem. A linearization scheme was devised using the
linear tangents of the concave portions of the objective function as valid inequalities,
and a branch-and-cut algorithm, as well as a tabu search heuristic were implemented.
We have also analyzed an extension of the original problem where more than one
service option is allowed. The solution methods we have developed for the original
problem can be adapted to the extended version in a straightforward manner. We
have conducted computational experiments on randomly generated instances and
on instances derived from TSPLIB. The solution values of our algorithms do not
deviate on the average by more than a few percents from the best upper bound
value.

Acknowledgments: This work was partially funded by the Canadian Natural Sci-
ences and Engineering Research Council under grants 227837-04 and 39682-05. This
support is gratefully acknowledged. The authors thank Stefan Ropke for providing
the code for an implementation of the Edmonds-Karp algorithm for the Maximum
Flow Problem.

17

Bibliography

[1] D.R. Bell, T.-H. Ho, and C.S. Tang, Determining Where To Shop: Fixed and
Variable Costs of Shopping, Journal of Marketing Research 35 (1998), 352-370.

[2] H.P. Benson, On the Global Optimization of Sums of Linear Fractional Func-
tions over a Convex Set, Journal of Optimization Theory and Applications 121
(2004), 19-39.

[3] T. Drezner, Competitive Facility Location in the Plane, Facility Location: A
Survey of Applications and Methods, Z. Drezner (Editor), Springer, Berlin
(1995), pp 285-300.

[4] T. Drezner and Z. Drezner, A Note on Applying the Gravity Rule to the
Airline Hub Problem, Journal of Regional Science 41 (2001), 67-73.

[5] T. Drezner and Z. Drezner, Validating the Gravity-Based Competitive Loca-
tion Model Using Inferred Attractiveness, Annals of Operations Research 111
(2002), 227-237.

[6] T. Drezner and Z. Drezner, Finding the Optimal Solution to the Huff Based
Competitive Location Model, Computational Management Science 1 (2004),
193–208.

[7] T. Drezner and Z. Drezner, Multiple Facilities Location in the Plane Using
the Gravity Model, Geographical Analysis 38 (2006), 391-406.

[8] T. Drezner and Z. Drezner, The Gravity p-Median Model, European Journal
of Operational Research 179 (2007), 1239-1251.

[9] J. Edmonds and R.M. Karp, Theoretical Improvements in Algorithmic Effi-
ciency for Network Flow Problems, Journal of the Association for Computing
Machinery 19 (1972), 248–264.

[10] H.A. Eiselt and G. Laporte, Demand Allocation Functions, Location Science
6 (1998), 175–187.

[11] D. Feillet, P. Dejax, M. Gendreau, Traveling Salesman Problems With Profits,
Transportation Science 39 (2005), 188–205.

18

[12] M. Fischetti, J. J. Salazar González, and P. Toth, Solving the Orienteering
Problem through Branch-And-Cut. INFORMS Journal on Computing 10
(1998), 133-148.

[13] R.W. Freund and F. Jarre, Solving the Sum-of-Ratios Problem by an Interior-
Point Method, Journal of Global Optimization 19 (2001), 83–102.

[14] J.M. Gauthier and G. Ribière, Experiments in Mixed-Integer Linear Program-
ming Using Pseudo-Costs, Mathematical Programming 12 (1977), 26-47.

[15] M. Gendreau, G. Laporte, and F. Semet, The Covering Tour Problem, Oper-
ations Research 45 (1997), 568-576.

[16] M. Gendreau, G. Laporte, and F. Semet, A Tabu Search Heuristic for the
Undirected Selective Traveling Salesman Problem, European Journal of Oper-
ational Research 106 (1998), 539-545.

[17] M. Gendreau, A. Hertz, and G. Laporte, New Insertion and Postoptimiza-
tion Procedures for the Traveling Salesman Problem, Operations Research 40
(1992), 1086–1094.

[18] B.L. Golden, L. Levy, and R. Vohra, The Orienteering Problem, Naval Re-
search Logistics 34 (1987), 307–318.

[19] M.J. Hodgson, G. Laporte, and F. Semet, A Covering Tour Model for Planning
Mobile Health Care Facilities in Suhum District, Ghana, Journal of Regional
Science 38 (1998), 621–638.

[20] D.L. Huff, Defining and Estimating A Trade Area, Journal of Marketing 28
(1964), 34-38.

[21] D.L. Huff, A Programmed Solution for Approximating an Optimum Retail
Location, Land Economics 42 (1966) 293-303.

[22] A.K. Jain and V. Mahajan, Evaluating the Competitive Environment in Re-
tailing Using Multiplicative Competitive Interactive Models, Research in Mar-
keting 2, J. Sheth (Editor), JAI Press, Greenwich, 1979, pp. 217–235.

[23] S. Kataoka and S. Morito, An Algorithm for the Single Constraint Maxi-
mum Collection Problem, Journal of Operations Research Society of Japan 31
(1988), 515-530.

19

[24] M. Labbé, G. Laporte, I. Rodriguez-Mart́ın, and J. J. Salazar González, The
Ring Star Problem: Polyhedral Analysis and Exact Algorithm, Networks 43
(2004), 177–189.

[25] M. Labbé, G. Laporte, I. Rodriguez-Mart́ın, and J. J. Salazar González, Lo-
cating median cycles in networks, European Journal of Operational Research
160 (2005), 457–470.

[26] G. Laporte and S. Martello, The Selective Traveling Salesman Problem, Dis-
crete Applied Mathematics 26 (1990), 193-207.

[27] Y. Lee, S.Y. Chiu, and J. Sanchez, A Branch and Cut Algorithm for the
Steiner Ring Star Problem, International Journal of Management Science 4
(1998), 21-34.

[28] J.R. Oppong and M. J. Hodgson, Spatial Accessibility to Health Care Facilities
in Suhum District, Ghana, The Professional Geographer 46 (1994), 199–209.

[29] M.W. Padberg and G. Rinaldi, Facet Identification for the Symmetric Travel-
ing Salesman Polytope, Mathematical Programming 47 (1990), 219–257.

[30] W.J. Reilly, The Law of Retail Gravitation, Knickerbocker Press, New York,
1931.

[31] G. Reinelt, TSPLIB - A Traveling Salesman Problem Library, ORSA Journal
on Computing 3 (1991), 376–384.

[32] S. Schaible, Fractional Programming, Handbook of Global Optimization, R.
Horst and P. M. Pardalos (Editors), Kluwer, Dordrecht, 1995, pp. 495–608.

[33] S. Schaible, Fractional Programming with Sums of Ratios, Scalar and Vector
Optimization in Economic and Financial Problems, E. Castagnoli, and G.
Giorgi (Editors), Elioprint, Milano, 1996, pp. 163–175.

20

Figure 1: The graph of f(wk) = wk

bk+wk

21

|T | |W | Succ. Avg.
Dev.

Max.
Dev.

Arc-vertex Str. Conn. Str. 2-Match Lin. Nodes Tour
size

Seconds

1 50 5 0.00% 0.00% 119.20 0.00 86.20 479.80 384.00 23.00 42.41
1 100 5 0.00% 0.00% 115.40 0.00 81.80 1356.60 614.60 22.80 114.94
1 150 5 0.00% 0.00% 125.60 0.00 182.60 2936.00 1792.60 23.40 668.07
12 50 5 0.00% 0.00% 52.40 182.80 36.00 294.40 260.60 31.60 7.49
12 100 5 0.00% 0.00% 103.15 45.70 96.65 795.40 463.20 31.20 22.26
12 150 5 0.00% 0.00% 81.40 380.60 226.80 1743.00 1619.00 30.60 193.13
25 50 5 0.00% 0.00% 25.60 350.20 201.60 155.20 413.60 41.20 17.39
25 100 5 0.00% 0.00% 31.20 353.00 170.80 422.20 251.80 41.80 12.94
25 150 5 0.00% 0.00% 58.75 262.46 146.37 814.40 244.60 40.80 21.63
37 50 5 0.00% 0.00% 13.40 414.40 332.20 147.20 248.80 44.80 14.12
37 100 5 0.00% 0.00% 15.80 513.40 254.80 356.00 683.80 44.80 44.27
37 150 5 0.00% 0.00% 28.95 378.69 221.15 522.40 52.60 45.20 5.68

Table 1: Average computational results for |V | = 50.

22

|T | |W | Succ. Avg.
Dev.

Max.
Dev.

Arc-vertex Str. Conn. Str. 2-Match Lin. Nodes Tour
size

Seconds

1 75 4 0.07% 0.34% 291.40 0.00 456.20 1607.60 1596.20 22.20 1738.68
1 150 5 0.00% 0.00% 252.00 0.00 196.60 3399.60 2680.20 23.20 2293.77
1 225 1 0.60% 1.14% 282.80 0.00 203.60 5982.80 1397.00 23.40 3303.87
18 75 5 0.00% 0.00% 115.80 947.00 377.80 738.20 755.00 35.60 193.39
18 150 5 0.00% 0.00% 115.40 817.00 349.40 1913.20 1347.80 35.60 340.45
18 225 5 0.00% 0.00% 118.40 623.40 168.20 2817.20 1598.20 35.40 490.71
37 75 5 0.00% 0.00% 67.00 1105.60 590.80 577.60 2598.80 51.60 323.07
37 150 5 0.00% 0.00% 68.60 1055.60 396.40 1076.80 1142.40 51.00 112.34
37 225 5 0.00% 0.00% 77.00 1389.00 718.00 1747.80 1615.80 50.20 295.21
56 75 5 0.00% 0.00% 10.60 341.60 223.00 166.40 26.20 69.00 4.75
56 150 5 0.00% 0.00% 21.00 780.20 414.40 467.80 188.40 68.40 26.53
56 225 5 0.00% 0.00% 22.40 986.80 558.60 844.60 460.00 66.20 60.07

Table 2: Average computational results for |V | = 75.

23

|T | |W | Succ. Avg.
Dev.

Max.
Dev.

Arc-vertex Str. Conn. Str. 2-Match Lin. Nodes Tour
size

Seconds

1 100 1 0.69% 2.47% 402.60 0.00 304.20 2077.80 775.60 26.60 3382.10
1 200 0 1.28% 2.02% 360.00 0.00 120.60 4607.60 537.80 28.00 3602.68
1 300 0 2.09% 4.11% 367.40 0.00 101.40 6741.20 236.20 25.20 3602.01
25 100 4 0.02% 0.06% 138.40 1348.80 461.60 1375.40 1128.80 40.40 875.25
25 200 3 0.22% 0.87% 199.40 2448.00 645.40 2959.80 1117.60 41.20 2582.54
25 300 0 0.78% 1.13% 189.60 2577.80 647.20 5424.40 1360.20 41.00 3601.46
50 100 4 0.03% 0.09% 109.20 4104.80 873.80 917.40 2217.40 61.60 1135.70
50 200 5 0.00% 0.00% 81.20 1560.00 456.40 1634.20 778.40 61.40 297.32
50 300 5 0.00% 0.00% 85.00 2160.40 991.00 3166.40 3107.80 61.20 1279.34
75 100 3 0.01% 0.02% 49.00 4928.80 2865.80 404.20 6408.40 82.80 1846.41
75 200 5 0.00% 0.00% 40.20 2526.20 1401.40 832.80 2054.80 82.40 740.44
75 300 5 0.00% 0.00% 35.80 1933.40 858.00 1260.60 810.60 82.00 228.47

Table 3: Average computational results for |V | = 100.

24

Data file |V | |T | |W | Opt. Tour
size

Seconds Data file |V | |T | |W | Opt. Tour
size

Seconds

kroA100.tsp 25 1 75 3208.87 11 34.06 kroB150.tsp 37 18 113 4775.70 23 2.12
kroA100.tsp 25 6 75 3415.33 15 8.16 kroB150.tsp 37 27 113 4907.78 30 0.99
kroA100.tsp 25 12 75 3491.10 19 1.72 kroB200.tsp 50 1 150 5158.18 13 147.86
kroA100.tsp 25 18 75 3562.48 24 0.06 kroB200.tsp 50 12 150 5122.27 19 627.50
kroA150.tsp 37 1 113 4781.18 12 381.00 kroB200.tsp 50 25 150 5725.12 30 10.31
kroA150.tsp 37 9 113 5083.13 17 106.79 kroB200.tsp 50 37 150 6001.81 39 2.25
kroA150.tsp 37 18 113 5319.77 24 25.27 kroC100.tsp 25 1 75 2910.12 11 10.48
kroA150.tsp 37 27 113 5417.65 31 1.42 kroC100.tsp 25 6 75 3055.04 15 2.86
kroA200.tsp 50 1 150 5571.03 13 2047.76 kroC100.tsp 25 12 75 3119.39 17 2.84
kroA200.tsp 50 12 150 5777.59 18 83.27 kroC100.tsp 25 18 75 3237.36 22 0.32
kroA200.tsp 50 25 150 6334.22 28 11.13 kroD100.tsp 25 1 75 3002.30 13 8.15
kroA200.tsp 50 37 150 6584.07 38 3.75 kroD100.tsp 25 6 75 3094.04 16 0.89
kroB100.tsp 25 1 75 3074.84 12 1.35 kroD100.tsp 25 12 75 3146.34 19 0.14
kroB100.tsp 25 6 75 3046.43 14 5.08 kroD100.tsp 25 18 75 3170.25 23 0.04
kroB100.tsp 25 12 75 3149.02 19 0.32 kroE100.tsp 25 1 75 3311.27 12 3.77
kroB100.tsp 25 18 75 3194.25 23 1.15 kroE100.tsp 25 6 75 3313.15 14 0.91
kroB150.tsp 37 1 113 4278.50 12 513.81 kroE100.tsp 25 12 75 3393.93 19 2.18
kroB150.tsp 37 9 113 4553.95 17 42.83 kroE100.tsp 25 18 75 3474.43 24 0.11

Table 4: Computational results for the instances adapted from TSPLIB.

25

|V | |T | |W | Succ. Avg. Dev. Max. Dev. Tour size Seconds
50 1 50 2 0.09% 0.23% 22.60 6.08
50 1 100 3 0.08% 0.24% 22.40 8.43
50 1 150 2 0.11% 0.36% 22.20 11.85
50 12 50 2 0.03% 0.09% 31.20 9.56
50 12 100 0 0.08% 0.25% 30.80 10.94
50 12 150 1 0.10% 0.18% 30.20 10.89
50 25 50 3 0.03% 0.07% 41.20 6.73
50 25 100 2 0.06% 0.11% 41.60 8.13
50 25 150 3 0.06% 0.16% 40.80 10.77
50 37 50 4 0.01% 0.02% 44.60 4.36
50 37 100 3 0.06% 0.20% 44.60 6.35
50 37 150 4 0.01% 0.03% 45.20 5.32
75 1 75 3 0.14% 0.51% 21.80 15.21
75 1 150 2 0.24% 0.41% 22.40 22.51
75 1 225 0 1.09% 1.98% 21.80 25.05
75 18 75 0 0.08% 0.19% 35.20 23.38
75 18 150 3 0.07% 0.18% 35.20 30.07
75 18 225 2 0.12% 0.37% 35.20 30.91
75 37 75 1 0.06% 0.08% 51.60 28.52
75 37 150 3 0.06% 0.24% 51.00 26.98
75 37 225 1 0.06% 0.18% 50.20 30.81
75 56 75 2 0.07% 0.20% 68.60 13.38
75 56 150 2 0.03% 0.05% 68.20 15.79
75 56 225 0 0.11% 0.17% 65.80 14.82
100 1 100 0 0.73% 1.96% 25.60 27.97
100 1 200 0 1.66% 2.66% 25.40 29.42
100 1 300 0 2.16% 3.25% 23.80 60.86
100 25 100 0 0.26% 0.37% 40.00 41.98
100 25 200 0 0.39% 1.14% 40.60 57.40
100 25 300 0 0.95% 1.44% 40.20 93.39
100 50 100 0 0.27% 0.53% 61.00 73.59
100 50 200 0 0.19% 0.34% 61.00 88.28
100 50 300 0 0.17% 0.40% 61.00 100.93
100 75 100 0 0.14% 0.40% 82.60 36.21
100 75 200 1 0.16% 0.43% 82.20 60.87
100 75 300 0 0.12% 0.20% 82.00 62.63

Table 5: Average computational results for the tabu search heuristic.

26

Data file |V | |T | |W | Best Sol. B&C Dev. TS Dev. Tour size Seconds
kroA100.tsp 25 1 75 2356.94 3.38% 4.84% 9 3600.07
kroA100.tsp 25 6 75 2588.61 0.00% 0.45% 10 550.52
kroA100.tsp 25 12 75 2725.50 0.00% 0.06% 16 264.75
kroA100.tsp 25 18 75 2879.12 0.00% 0.04% 20 385.60
kroA150.tsp 37 1 113 3507.38 6.79% 7.24% 7 3600.16
kroA150.tsp 37 9 113 3882.47 0.00% 0.74% 14 418.71
kroA150.tsp 37 18 113 4166.33 0.00% 0.00% 20 37.11
kroA150.tsp 37 27 113 4268.37 0.00% 0.00% 30 100.44
kroA200.tsp 50 1 150 3695.43 12.34% 13.73% 10 3600.49
kroA200.tsp 50 12 150 3938.35 0.00% 0.71% 17 1508.07
kroA200.tsp 50 25 150 4545.33 0.00% 0.00% 28 748.35
kroA200.tsp 50 37 150 4914.69 0.00% 1.32% 38 4.50
kroB100.tsp 25 1 75 2574.24 0.00% 5.13% 7 5.26
kroB100.tsp 25 6 75 2392.91 0.00% 0.00% 11 17.62
kroB100.tsp 25 12 75 2507.46 0.00% 0.00% 15 19.84
kroB100.tsp 25 18 75 2599.71 0.00% 0.00% 20 209.94
kroB150.tsp 37 1 113 3041.24 7.64% 10.47% 8 3600.16
kroB150.tsp 37 9 113 3282.68 0.00% 0.31% 15 320.64
kroB150.tsp 37 18 113 3525.57 0.00% 0.00% 22 88.78
kroB150.tsp 37 27 113 3700.55 0.00% 0.00% 29 8.97
kroB200.tsp 50 1 150 3589.77 5.31% 7.28% 10 3600.30
kroB200.tsp 50 12 150 3537.65 0.00% 0.27% 20 1984.54
kroB200.tsp 50 25 150 4209.82 0.00% 0.01% 30 1700.38
kroB200.tsp 50 37 150 4597.72 0.00% 0.00% 38 26.76
kroC100.tsp 25 1 75 2114.73 0.00% 3.56% 8 1341.87
kroC100.tsp 25 6 75 2287.62 0.00% 2.32% 10 310.89
kroC100.tsp 25 12 75 2303.60 0.00% 0.00% 15 43.10
kroC100.tsp 25 18 75 2524.49 0.00% 1.31% 18 0.87
kroD100.tsp 25 1 75 2335.89 0.00% 1.25% 8 788.75
kroD100.tsp 25 6 75 2435.53 0.00% 0.55% 12 190.42
kroD100.tsp 25 12 75 2522.17 0.00% 1.10% 15 1.24
kroD100.tsp 25 18 75 2642.82 0.00% 0.00% 19 6.66
kroE100.tsp 25 1 75 2618.69 0.00% 3.53% 7 90.49
kroE100.tsp 25 6 75 2561.26 0.00% 2.70% 10 9.03
kroE100.tsp 25 12 75 2659.52 0.00% 0.31% 16 2.85
kroE100.tsp 25 18 75 2766.34 0.00% 0.00% 22 46.59

Table 6: Computational results for the extended problem.

27

	Introduction
	The Model
	Linearization Scheme and Valid Inequalities
	Branch-and-Cut Algorithm
	Tabu Search Heuristic
	Computational Results
	Extension: More Than One Service Option
	Conclusion

