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Sample space

De�nition
The sample space Ω = fωi : i 2 Ig is the set of all possible
outcomes of a random experiment. Let I be a set of indices.
For example, I = f0, 1, 2, ...,Tg, I = f0, 1, 2, ...g,
I = [0,∞), etc.

Example. If the random experiment consists of rolling a dice,
then

Ω =
n
1 , 2 , 3 , 4 , 5 , 6

o
.
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Event

De�nition
(incomplete). An event is a subset of Ω.

Example.

A = the result is even =
n
2 , 4 , 6

o
.
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Random variables I
Incomplete de�nition

De�nition
(incomplete). A random variable X : Ω ! R is a function
mapping the sample space (its domain) to real numbers R.

Beware! �Sample space�and �random variable�are concepts
that should not be confused.
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Random variables II
Incomplete de�nition

Example. If the random experiment consists of choosing a
card at random from a deck of 52 cards, then the event
�drawing the king of hearts� is not a random variable, since,
among other things, �king of hearts� is not a real number.
However, if drawing a certain card is associated with 10 points,
then such a relationship is a random variable.
That�s why we have chosen to use boxed numbers to denote
the possible results of a dice roll: the idea is to distinguish
between the event

n
4
o
= �the side showing four dots � from

the random variable that associates each of the sides of the
dice to the number of dots on that side.
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Random variables
Example

Example. X , Y , Z and W are random variables:

ω X (ω) Y (ω) Z (ω) W (ω)

1 0 0 0 5
2 0 5 0 5
3 5 5 0 5
4 5 5 5 5
5 10 5 10 0
6 10 10 10 10
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Probability measures
Incomplete de�nition

De�nition
(incomplete). P is a probability measure on the space Ω if :

P1 P (Ω) = 1.
P2 For any event A in Ω, 0 � P (A) � 1.
P3 For any mutually disjoint events A1, A2, ...,

P
�S

i�1 Ai
�
= ∑i�1 P (Ai ) where two events Ai and Aj

are disjoint if Ai \ Aj = ?.



Probability
space

Sample space

Random
variables

Probability
measures

Distributions
(laws)

Sigma-
algebras

Probability
measures
(continued)

References

Appendices

Probability measures
Example

Example. The probability measure P represents the situation
where the dice is well balanced, while Q models a case where
the dice is loaded.

ω P (ω) Q (ω)

1 1
6

4
12

2 1
6

1
12

3 1
6

1
12

ω P (ω) Q (ω)

4 1
6

1
12

5 1
6

1
12

6 1
6

4
12
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Probability measures
Equivalent de�nition

Theorem
When Card (Ω) < ∞, say Ω = fω1, ...,ωng then the three
conditions (P1), (P2) and (P3) in the partial de�nition of a
probability measure are equivalent to the three following
conditions:

P1* 8i 2 f1, ..., ng, P (ωi ) � 0.
P2* For any event A in Ω, P (A) = ∑ω2A P (ω) .

P3* ∑n
i=1 P (ωi ) = 1.

The proof can be found in the appendix.
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Probability measures
Properties

Theorem
Probability measures have the following properties:

P4 For any event A in Ω, P (Ac ) = 1�P (A) .

P5 P (?) = 0.
P6 For any two events A and B in Ω (not necessarily

disjoint), P (A[ B) = P (A) +P (B)�P (A\ B) .
P7 If A � B � Ω then P (A) � P (B) .
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Probability measures I
Proofs

To be shown: For any event A of Ω, P (Ac ) = 1�P (A) .

Proof of (P4).

1 = P (Ω) = P (A[ Ac ) = P (A) +P (Ac )

where the �rst equality comes from (P1) and the third equality
comes from (P3). �
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Probability measures II
Proofs

To be shown: P (?) = 0.

Proof of (P5). Property (P5) is nothing more than a special
case of (P4): let�s replace A with Ω. �
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Probability measures III
Proofs

To be shown: for any two events A and B of Ω not
necessarily disjoint),

P (A[ B) = P (A) +P (B)�P (A\ B) .

Proof of (P6). Since

A = (A \ B) [ (A \ Bc ) and B = (B \ A) [ (B \ Ac )

then, using (P3), we get

P (A) = P (A \ B) +P (A \ Bc ) and P (B) = P (B \ A) +P (B \ Ac ) .
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Probability measures IV
Proofs

On the other hand, A [ B = (A \ Bc ) [ (B \ Ac ) [ (A \ B) , which
implies that

P (A [ B)
= P (A \ Bc ) +P (B \ Ac ) +P (A \ B)
= [P (A \ Bc ) +P (A \ B)] + [P (B \ Ac ) +P (A \ B)]

�P (A \ B)
= P (A) +P (B)�P (A \ B) . �
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Probability measures V
Proofs

To be shown: If A � B � Ω then P (A) � P (B) .

Proof of (P7). Since A � B then A\ B = A. Using (P3),

P (B) = P (A\ B) + P (Ac \ B)| {z }
�0 from (P2)

� P (A\ B) = P (A) . �
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Probability measures built on Ω exist independently from the
random variables and vice versa. What is the link between
them? That�s the topic of the next section.
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Distribution (law)
De�nition

De�nition
The distribution or the law of a random variable X is
characterized by its (cumulative) distribution function

FX : R ! [0, 1]

x ! probability that the r.v. X is less than or equal to x .

So, if P is the probability measure assigned to Ω then

8x 2 R, FX (x) = P fω 2 Ω jX (ω) � x g .
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Distribution (law)
Alternative characterization

Theorem
In the case where Card (Ω) < ∞, the distribution of a random
variable is also characterized by its probability mass function

fX : R ! [0, 1]

x ! probability that the r.v. X is equal to x ,

that is

8x 2 R, fX (x) = P fω 2 Ω jX (ω) = x g .

A proof of this result can be found in the appendix.
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Distribution (law) I
Example

ω W (ω) Q (ω)

1 5 4
12

2 5 1
12

3 5 1
12

ω W (ω) Q (ω)

4 5 1
12

5 0 1
12

6 10 4
12
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Distribution (law) II
Example

Let�s �nd the probability mass function and the cumulative
distribution function of the random variable W .

fW (x) = Q fω 2 Ω jW (ω) = x g

=

8>>>>><>>>>>:
Q
n
5
o

if x = 0

Q
n
1 , 2 , 3 , 4

o
if x = 5

Q
n
6
o

if x = 10

0 otherwise

=

8>>>><>>>>:

1
12 if x = 0
4
12 +

1
12 +

1
12 +

1
12 =

7
12 if x = 5

4
12 if x = 10

0 otherwise

.
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Distribution (law) III
Example

Recall that:

ω W (ω) Q (ω)

1 5 4
12

2 5 1
12

3 5 1
12

ω W (ω) Q (ω)

4 5 1
12

5 0 1
12

6 10 4
12
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Distribution (law) IV
Example

Let�s calculate the cumulative distribution function:

if x < 0 then

FW (x) = Q fω 2 Ω jW (ω) � x g = Q (?) = 0;
if 0 � x < 5 then

FW (x) = Q fω 2 Ω jW (ω) � x g = Q
n
5
o
=
1
12
;

if 5 � x < 10 then

FW (x) = Q fω 2 Ω jW (ω) � x g = Q
n
1 , 2 , 3 , 4 , 5

o
=
8
12
;

if x � 10 then

FW (x) = Q fω 2 Ω jW (ω) � x g = Q (Ω) = 1.
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Distribution (law)
Cumulative distribution function properties

R1 It�s a non-decreasing function, that is to say that if x < y
then FX (x) � FX (y) .

R2 It�s a function that is right-continuous with left limits.

R3 limx#�∞ FX (x) = 0 and limx"∞ FX (x) = 1.
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Distribution (law)
Notation

Remark. In order to alleviate the notation, it is common to
write fX � xg instead of fω 2 Ω jX (ω) � x g and
P fX � xg instead of P fω 2 Ω jX (ω) � x g .
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Distribution (law) I
Example

ω X (ω) Y (ω) Z (ω) W (ω) P (ω) Q (ω)

1 0 0 0 5 1
6

4
12

2 0 5 0 5 1
6

1
12

3 5 5 0 5 1
6

1
12

4 5 5 5 5 1
6

1
12

5 10 5 10 0 1
6

1
12

6 10 10 10 10 1
6

4
12
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Distribution (law) II
Example

Distributions of the random variables X ,Y ,Z and W
under the probability measure P

x P fX = xg P fY = xg P fZ = xg P fW = xg

0 1
3

1
6

1
2

1
6

5 1
3

2
3

1
6

2
3

10 1
3

1
6

1
3

1
6

Remark. The distribution of the random variable X is said to be uniform
since

P fX = 0g = P fX = 5g = P fX = 10g = 1
3
.
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Distribution (law) III
Example

Recall that:

Distributions of the random variables X ,Y ,Z and W
under the probability measure P

x P fX = xg P fY = xg P fZ = xg P fW = xg

0 1
3

1
6

1
2

1
6

5 1
3

2
3

1
6

2
3

10 1
3

1
6

1
3

1
6

Remark. The random variables Y and W have the same distribution,
although they are not equal. Indeed,

Y
�
1
�
= 0 6= 5 = W

�
1
�
.
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Distribution (law) IV
Example

Distributions of the random variables X ,Y ,Z and W
under the probability measure Q

x Q fX = xg Q fY = xg Q fZ = xg Q fW = xg

0 5
12

1
3

1
2

1
12

5 2
12

1
3

1
12

7
12

10 5
12

1
3

5
12

1
3

Remark. Let�s note that the distributions of the random variables have
changed. Moreover, under the probability measure Q, the random variables
Y and W don�t have the same distribution any more.
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Random variables
Equality and equality in law

De�nition
Two random variables X and Y are said to be equal if and
only if 8ω 2 Ω, X (ω) = Y (ω).
They are said to be equal in distribution (or in law) when they
have the same distribution.

1 The concept of equality between two random variables is stronger
than the concept of equality in distribution. Indeed, if two random
variables are equal, then they are equal in distribution.

2 However, two random variables may be equal in distribution but not
equal.

3 Moreover, two random variables may be equal in distribution under a
certain probability measure but not be equal under another
probability measure.

In the previous example, when the probability measure P is
assigned to Ω, Y and W are equal in distribution but they are
not equal.
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Sigma-Algebra
Introduction

Question. If Card (Ω) = n < ∞, how many distinct events are
there?

Answer 2n. An event is a subset of Ω = fω1, ...,ωng. When
we create an event A � Ω, we have, for every ωi , two
alternatives: either ωi 2 A or ωi /2 A.
Example. If n = 3 then

ω1 2 A
ω2 2 A

ω2 /2 A

ω3 2 A
ω3 /2 A
ω3 2 A
ω3 /2 A

fω1,ω2,ω3g = Ω
fω1,ω2g
fω1,ω3g
fω1g

ω1 /2 A
ω2 2 A

ω2 /2 A

ω3 2 A
ω3 /2 A
ω3 2 A
ω3 /2 A

fω2,ω3g
fω2g
fω3g
?
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Sigma-Algebra
Introduction

Usually, we don�t need to know the probabilities associated
with every event in Ω. Such a situation is particularly frequent
when Card (Ω) is large or in�nite.
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Sigma-Algebra
Example

Example. The sample space is Ω =
n
1 , 2 , 3 , 4 , 5 , 6

o
. Let�s

assume we are interested in the random variable X only.

ω X (ω) ω X (ω)

1 0 4 5
2 0 5 10
3 5 6 10

The events that characterize the distribution of X are

fX = 0g =
n
1 , 2

o
; fX = 5g =

n
3 , 4

o
; fX = 10g =

n
5 , 6

o
.

So, in order to �nd the distribution of X , we only need to know the

probabilities associated with the events
n
1 , 2

o
,
n
3 , 4

o
andn

5 , 6
o
. Knowing, in addition, the probability that event

n
1
o
occurs

doesn�t give us any additional information about the distribution of the
random variable X .
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Sigma-Algebra I
De�nition

The properties of a probability measure are such that, if we
know the probability that an event A occurs, then we also know
the probability associated with its complement Ac since
P (Ac ) = 1�P (A) . We are also able to determine the
probability associated with the union of a certain number of
events characterizing the distribution of X because of property
(P6).
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Sigma-Algebra II
De�nition

De�nition
A σ�algebra F of Ω is a subset of events such that

T1 Ω 2 F .
T2 If A 2 F then Ac 2 F .
T3 If A1,A2, ... 2 F then

S
i�1 Ai 2 F . In the case where

Card (Ω) < ∞, the condition (T3) is equivalent to

(T3�) If A1,A2, ...,An 2 F then
Sn
i�1 Ai 2 F .

Intuitively, the σ�algebra is the set of events in which we are
interested.
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Sigma-Algebra
Examples

Example. The trivial σ�algebra: f?,Ωg.
Example. The smallest σ�algebra containing the event A
is f?,A,Ac ,Ωg.
Example. Ω =

n
1 , 2 , 3 , 4 , 5 , 6

o
. The smallest

σ�algebra containing the events
n
1 , 2

o
,
n
3 , 4

o
andn

5 , 6
o
is8<: ?,

n
1 , 2

o
,
n
3 , 4

o
,
n
5 , 6

o
,
n
1 , 2 , 3 , 4

o
,n

1 , 2 , 5 , 6
o
,
n
3 , 4 , 5 , 6

o
,Ω

9=; .
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Sigma-Algebra I
De�nitions

De�nition
The pair (Ω,F ) made up of a sample space and a σ�algebra
is called measurable space.

De�nition
A family P = fA1, ...,Ang of events in Ω is called a �nite
partition of Ω if

(PF1) 8i 2 f1, ..., ng , Ai 6= ?,
(PF2) 8i , j 2 f1, ..., ng such that i 6= j , Ai \ Aj = ?,
(PF3)

Sn
i=1 Ai = Ω.
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Sigma-Algebra II
De�nitions

De�nition
A σ�algebra F is said to be generated from the �nite partition
P if it is the smallest σ�algebra that contains all the elements
of P . In that case F is denoted σ (P) and the elements of P
are the atoms of F .
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Random variables
De�nition

De�nition
A random variable X constructed on the measurable space
(Ω,F ) , is a real-valued function X : Ω ! R such that

(�) 8x 2 R, fω 2 Ω : X (ω) � xg 2 F



Probability
space

Sample space

Random
variables

Probability
measures

Distributions
(laws)

Sigma-
algebras
Measurable
space

Probability
measures
(continued)

References

Appendices

Random variables
De�nition

Exercise. Show that, if Card (Ω) < ∞, then the condition (�)
is equivalent to

(��) 8x 2 R, fω 2 Ω jX (ω) = x g 2 F .

So, X : Ω ! R is a random variable on the measurable space
(Ω,F ) if and only if the events that characterize its
distribution are elements of F . If F and G are two σ�algebras
of Ω then it is possible that X is a random variable on the
measurable space (Ω,F ) but that it is not a random variable
on the space (Ω,G). To clearly express the fact that the
σ�algebra F contains the events characterizing the
distribution of X , we say that X is F�measurable.
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Random variables I
Example

Ω =
n
1 , 2 , 3 , 4 , 5 , 6

o
and F =

n
?,
n
1 , 3 , 5

o
,
n
2 , 4 , 6

o
,Ω
o
.

The function U : Ω ! R that returns 1 if the result is even and 0
otherwise is a random variable on (Ω,F ) whereas the function V : Ω ! R

that returns 1 if the result is less than 4 and 0 otherwise is not. Indeed,

fω 2 Ω jU (ω) = x g =

8>><>>:
n
1 , 3 , 5

o
2 F if x = 0n

2 , 4 , 6
o
2 F if x = 1

? 2 F otherwise

and

fω 2 Ω jV (ω) = x g =

8>><>>:
n
4 , 5 , 6

o
/2 F if x = 0n

1 , 2 , 3
o

/2 F if x = 1

? 2 F otherwise

.

U is said to be F�measurable whereas V is not.
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Random variables II
Example

By contrast, U and V are G�measurable where

G = σ
nn

2
o
,
n
5
o
,
n
1 , 3

o
,
n
4 , 6

oo

=

8>>>>>><>>>>>>:

?,
n
2
o
,
n
5
o
,
n
1 , 3

o
,
n
4 , 6

o
,
n
2 , 5

on
1 , 2 , 3

o
,
n
1 , 3 , 5

o
,
n
2 , 4 , 6

o
,
n
4 , 5 , 6

o
,n

1 , 2 , 3 , 5 ,
o
,
n
1 , 3 , 4 , 6

o
,
n
2 , 4 , 5 , 6

on
1 , 3 , 4 , 5 , 6

o
,
n
1 , 2 , 3 , 4 , 6

o
,Ω

9>>>>>>=>>>>>>;
The next results will enable us to identify the smallest
σ�algebra that make one or several random variables
measurable.
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Random variables
Measurability

Theorem
Let (Ω,F ) , Card (Ω) < ∞, be a measurable space and
P = fA1, ...,Ang , be the �nite partition of Ω that generates
F . The function X : Ω ! R is a random variable on that
space (X is F�measurable) if and only if X is constant on the
atoms of F .
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Random variables I
Proof

Proof. Let�s �rst verify that, if X is constant on the atoms of
F then X is a random variable on that space (Ω,F ).

If X is constant on the atoms of F then X may only take a
�nite number of values that we will denote x1, ..., xm . So,
8i 2 f1, ...,mg, the event fω 2 Ω jX (ω) = xi g may be
represented as a union of atoms of F and, since a σ�algebra is
closed under �nite unions, then fω 2 Ω jX (ω) = xi g 2 F . �
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Random variables II
Proof

Let�s now verify that if X is a random variable, then X is
constant on the atoms of F .
We�re going to use a proof by contradiction. Let�s assume that
there exists an atom Ak of F on which X is not constant.
Then there exists at least two values for X on Ak . Let x0, be
one of those values. The event A0 = fω 2 Ω jX (ω) = x0 g is
an element of the σ�algebra because, by hypothesis, X is a
random variable. As a result, A0 is a strict subset of Ak that
belongs to F , which contradicts the fact that Ak is an atom of
F . �
The proof of the theorem is complete. �
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Corollary
Any random variable on a measurable space equipped with the
trivial σ�algebra is constant.

Corollary
If F = the set of all possible events in Ω then any real-valued
function on Ω (X : Ω ! R) is F�measurable, that is to say
that is is a random variable on (Ω,F ).
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Generated sigma-algebra

De�nition
Let X : Ω ! R. The smallest σ�algebra F that make X a
random variable on the measurable space (Ω,F ) is called the
σ�algebra generated by X and is denoted σ(X ).

If Card(Ω) < ∞ then X can only take a �nite number of
values, let�s say x1, ..., xm . For any i 2 f1, ...,mg, let�s de�ne
Ai = fω 2 Ω jX (ω) = xi g. Then P = fA1, ...,Amg is a �nite
partition of Ω and σ (X ) = σ (P) .
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Transformations

Theorem
Let�s assume that Card(Ω) < ∞. If X : Ω ! R and
Y : Ω ! R are F�measurable, then 8a, b 2 R, aX + bY is
also F�measurable, which is to say that any linear
combination of random variables built on the same measurable
space is a random variable of that space.
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Transformations

Proof. Since Card(Ω) < ∞, the random variables X and Y
can only take a �nite number of values, let�s say x1 < ... < xm
and y1 < ... < yn respectively. 8z 2 R,

fω 2 Ω jaX (ω) + bY (ω) � z g
=

[
axi+byj�z

�
ω 2 Ω

��X (ω) = xi and Y (ω) = yj 	
=

[
axi+byj�z

fω 2 Ω jX (ω) = xi g| {z }
2F

\
�

ω 2 Ω
��Y (ω) = yj 	| {z }
2F| {z }

2F

2 F . �
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De�nitions

De�nition
Let (Ω,F ) be a measurable space. The function
P : F ! [0, 1] is a probability measure on (Ω,F ) if
P1 P (Ω) = 1.
P2 8A 2 F , 0 � P (A) � 1.
P3 8A1, A2, ...2 F such that Ai \ Aj = ? if i 6= j ,

P
�S

i�1 Ai
�
= ∑i�1 P (Ai ) .

De�nition
The triple (Ω,F ,P) made up of a sample space, a σ�algebra
on Ω and a probability measure built on (Ω,F ) is called
probability space.
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Theorem
When Card (Ω) < ∞, let�s say Ω = fω1, ...,ωng then the
three conditions (P1), (P2) and (P3) of the partial de�nition
of a probability measure are equivalent to the following three
conditions:

De�nition
P1* 8i 2 f1, ..., ng, P (ωi ) � 0.
P2* For any event A in Ω, P (A) = ∑ω2A P (ω) .

P3* ∑n
i=1 P (ωi ) = 1.
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Proof. Let�s �rst assume that P satis�es the three conditions
(P1), (P2) and (P3) of the de�nition of a probability measure
and let�s show that, then, P also satis�es the conditions (P1�),
(P2�) and (P3�).

(P1�) Since 8i 2 f1, ..., ng, fωig is an event in Ω then,
from condition (P2), 0 � P (ωi ) � 1.
(P2�) Since fω1g , ..., fωng are mutually disjoint events,
then, using condition (P3), we obtain that, for any event
A in Ω, P (A) = ∑ω2A P (ω) .

(P3�) Since Ω is itself an event, by using the equality that
we have just established and property (P1), we have that
∑n
i=1 P (ω) = P (Ω) = 1.
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Let�s now assume that P satis�es conditions (P1�), (P2�) and
(P3�) and let�s show that, then, P also satis�es the three
conditions of the partial de�nition of a probability measure.

(P1) Using successively (P2�)) and (P3�),
P (Ω) = ∑n

i=1 P (ωi ) = 1.

(P2) Since condition (P1�) implies that 8ω 2 Ω,
P (ω) � 0, then for any event A in Ω,
P (A) = ∑ω2A P (ω) � 0 where the equality is warranted
by (P2�).
On the other hand, by using successively (P2�), the
inequality above and (P3�), P (A) = ∑ω2A P (ω) �
∑ω2A P (ω) + ∑

ω2Ac
P (ω)| {z }
�0

= ∑ω2Ω P (ω) = 1.
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(P3) For all events A1, A2, ... mutually disjoint,

P

 [
i�1
Ai

!
= P

0@ [
ω2Si�1 Ai

ω

1A
= ∑

ω2Si�1 Ai
P (ω)

= ∑
i�1

∑
ω2Ai

P (ω)

= ∑
i�1

P (Ai ) . �
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Theorem
In the case where Card (Ω) < ∞, the distribution of a random
variable is also characterized by its probability mass function

fX : R ! [0, 1]

x ! probability that the r.v. X is equal to x ,

which is to say that

8x 2 R, fX (x) = P fω 2 Ω jX (ω) = x g .



Probability
space

Sample space

Random
variables

Probability
measures

Distributions
(laws)

Sigma-
algebras

Probability
measures
(continued)

References

Appendices
Probability
measures
Random
variables

Probability measures II
Appendix II

Proof. We must prove that

(i) Given a probability mass function fX , there exists one
and only one cumulative distribution function,

(ii) for any given cumulative distribution function FX ,
there exists one and only one probability mass function.

Since Card (Ω) < ∞ then the random variable X can only take
a �nite number of values, let�s say x1 < ... < xn.
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Proof of point (i). Let fX be the probability mass function of
the random variable X . Then, 8x 2 R,

FX (x) = P fω 2 Ω jX (ω) � x g

= P

" [
xi�x

fω 2 Ω jX (ω) = xi g
#

= ∑
xi�x

P fω 2 Ω jX (ω) = xi g

because the events in question are disjoint.

= ∑
xi�x

fX (xi ) .

Since, by construction, the probability mass function is unique,
then, the cumulative distribution function is also unique.
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Proof of point (ii). Let FX , be the cumulative distribution
function of the random variable X . Then, 8i 2 f2, ..., ng ,

FX (xi )

= P fω 2 Ω jX (ω) � xi g
= P [fω 2 Ω jX (ω) = xi g [ fω 2 Ω jX (ω) � xi�1 g]
= P fω 2 Ω jX (ω) = xi g+P fω 2 Ω jX (ω) � xi�1 g

because both events in question are disjoint.

= fX (xi ) + FX (xi�1) .

Which implies that 8i 2 f2, ..., ng ,

fX (xi ) = FX (xi )� FX (xi�1) .
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What happens to x1? Since x1 is the smallest possible value for
the random variable X ,

fX (x1) = P fω 2 Ω jX (ω) = x1 g
= P fω 2 Ω jX (ω) � x1 g
= FX (x1) .

Now, 8x 2 R, x /2 fx1, ..., xng,

fX (x) = P fω 2 Ω jX (ω) = x g = P f?g = 0.

Since, by construction, the cumulative distribution function is
unique, then, the probability mass function is also unique. �
That last argument completes the proof of the proposition. �
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